5492
H. Matter et al. / Bioorg. Med. Chem. Lett. 21 (2011) 5487–5492
9. Heiden, W.; Goetze, T.; Brickmann, J. J. Comp. Chem. 1993, 14, 246.
10. McMartin, C.; Bohacek, R. S. J. Comput.-Aided Mol. Des. 1997, 11, 333.
11. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J.; Mainz, D. T.;
Repasky, M. P.; Knoll, E. H.; Shelley, M.; Perry, J. K.; Shaw, D. E.; Francis, P.;
Shenkin, P. S. J. Med. Chem. 2004, 47, 1739.
12. Modeling was done using Sybyl 8.0 (Tripos) employing the MMFF94s force
field (Halgren, T. J. Comp. Chem. 1999, 20, 720.). Protein–ligand complexes were
minimized using the quasi-Newton–Raphson procedure. For manual docking,
ligands were placed in the binding site and optimized treating all side chains
within 4 Å flexible. Automated docking was done using QXP10 or Glide.11
13. Filipski, K. J.; Kohrt, J. T.; Casimiro-Garcia, A.; Van Huis, C. A.; Dudley, D. A.;
Cody, W. L.; Bigge, C. F.; Desiraju, S.; Sun, S.; Maiti, S. N.; Jaber, M. R.; Edmunds,
J. J. Tetrahedron Lett. 2006, 47, 7677.
there is no strict linearity when transferring preferred substituents.
Hence, we explored both novel scaffolds with a privileged set of
building blocks directed to S1 in addition with other modifications
at the azaindole N1-position, the piperazine and the azaindole-6-
position.
After decoration of these scaffolds, compounds with high affin-
ity and favorable physicochemical properties were identified. In
particular, the incorporation of substituted phenoxy- or benzyl
derivatives in S1 combined with substitution at the azaindole core
led to a significant improvement of affinity. The availability of
X-ray structures of renin-inhibitor complexes during our optimiza-
tion allowed us to unveil the key determinants to affinity.
14. Robinson, R. P.; Donahue, K. M. J. Org. Chem. 1991, 56, 4805.
15. Steinhagen, H.; Scheiper, B.; Matter, H.; McCort, G. WO 2009095162; PCT Int.
Appl. 2009.
16. Inhibitory activity expressed as inhibition constant IC50 toward recombinant
human renin was determined using an assay in which the non-endogenous
Acknowledgments
fluorogenic substrate Dabcyl-c-Abu-Ile-His-Pro-Phe-His-Leu-Val-Ile-His-Thr-
EDANS is cleaved at the Leu-Val bond in analogy to angiotensinogen. Human
renin at a concentration of 5 nM is incubated with the test compound at
various concentrations and the substrate at a concentration of 10 lM (2 h at rt)
in 0.05 M Tris buffer (pH 8). The increase in fluorescence due to fluorescence
resonance energy transfer at an emission wavelength of 485 nM is recorded in
a microplate spectrofluorometer.15
The authors would like to thank Sabrina Berger, Holger Gaul,
Silvia Hein, Laetitia Martin, Andrea Müller, Mathilde Pierre and
Katja Wittmann for their technical assistance.
17. Tautomer ratios were computed using the Tauthor approach, as implemented
in MoKa (Molecular Discovery Ltd., version 1.1.0): Milletti, F.; Storchi, L.;
Sforna, G.; Cross, S.; Cruciani, G. J. Chem. Inf. Model. 2009, 49, 68.
18. Rahuel, J.; Rasetti, V.; Maibaum, J.; Rüeger, H.; Göschke, R.; Cohen, N.-C.; Stutz,
S.; Cumin, F.; Fuhrer, W.; Wood, J. M.; Grütter, M. G. Chem. Biol. 2000, 7, 493.
References and notes
1. Kearney, P. M.; Whelton, M.; Reynolds, K.; Muntner, P.; Whelton, P. K.; He, J.
Lancet 2005, 365, 217.
2. (a) Amin Zaman, M.; Oparil, S.; Calhoun, D. A. Nat. Rev. Drug Disc. 2002, 1, 621;
(b) Jensen, C.; Herold, P.; Brunner, H. R. Nat. Rev. Drug Disc. 2008, 7, 399.
3. MacGregor, G. A.; Markandu, N. D.; Roulston, J. E.; Jones, J. E.; Morton, J. J.
Nature 1981, 291, 329.
19.
a
Recombinant human renin is incubated with the inhibitor at various
concentrations plus the substrate Dabcyl- -Abu-Ile-His-Pro-Phe-His-Leu-Val-
Ile-His-Thr-EDANS at 25 M for 30 min at 37 C and 30 min at rt in human or
c
l
mouse (C57BL6) plasma. Fluorescence is recorded at an excitation wavelength
of 330 nM and an emission wavelength of 485 nM. IC50 values are calculated
from inhibition as function of concentration from multiple measurements.; b
4. Wood, J. M.; Stanton, J. L.; Hofbauer, K. G. J. Enzyme Inhib. Med. Chem. 1987, 1,
169.
5. (a) Göschke, R.; Stutz, S.; Rasetti, V.; Cohen, N.-C.; Rahuel, J.; Rigollier, P.; Baum,
H.-P.; Forgiarini, P.; Schnell, C. R.; Wagner, T.; Grütter, M. G.; Fuhrer, W.;
Schilling, W.; Cumin, F.; Wood, J. M.; Maibaum, J. J. Med. Chem. 2007, 50, 4818;
(b) Maibaum, J.; Stutz, S.; Göschke, R.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.;
Rahuel, J.; Baum, H.-P.; Cohen, N.-C.; Schnell, C. R.; Fuhrer, W.; Grütter, M. G.;
Schilling, W.; Wood, J. M. J. Med. Chem. 2007, 50, 4832.
6. Scheiper, B.; Matter, H.; Steinhagen, H.; Stilz, U.; Böcskei, Z.; Fleury, V.; McCort,
G. Bioorg. Med. Chem. Lett. 2010, 20, 6268.
7. Scheiper, B.; Matter, H.; Steinhagen, H.; Böcskei, Z.; Fleury, V.; McCort, G.
8. (a) Burley, S. K.; Petsko, G. A. Science 1985, 229, 23; (b) McGaughey, G. B.;
Gagné, M.; Rappé, A. K. J. Biol. Chem. 1998, 273, 15458.
Permeability studies using Caco-2/TC7 cells are performed using 20 lM
compound concentration in the apical to basolateral direction with a pH
gradient (6.5–7.4) and a BSA gradient (0.5–5%). After 2 h at 37 °C, the apparent
permeability value (Papp) is obtained from quantification [⁄10ꢀ7 cm/s].;
Physico-chemical properties (pKa, log P, log D) are computed using MoKa
(Molecular Discovery Ltd., version 1.1.0.): (c) Milletti, F.; Storchi, L.; Sforna, G.;
Cruciani, G. J. Chem. Inf. Model. 2010, 47, 2172; Ligand and lipophilic ligand
efficiencies are computed according to: (d) Hopkins, A. L.; Groom, C. R.; Alex, A.
Drug Disc. Today 2004, 9, 430; Leeson, P. D.; Springthorpe, B. Nat. Rev. Drug Disc.
2007, 6, 881.