to synthetically useful nitrogen heterocycle 3 (Scheme 1).
isomerization-intramolecular [4 + 2] cycloaddition se-
However, the dependence on DMDO as the key oxidant for
quence.
To commence our studies, we initially examined an
N-Boc-substituted allenamide, but it was not useful for
platinum and gold protocols (see ref 18 for results).
Consequently, N-sulfonyl-allenamide 919 was prepared from
propargyl amide 8 via our base-promoted isomerization
protocol using catalytic t-BuOK.20 We quickly found that
with the exception of AuCl (entries 5-7 in Table 1),
Scheme 1. Cycloadditions of N-Tethered Allenamides
Table 1. Exploring Conditions for the Cycloaddition
4 Å
MS
temp
(°C)
yield
(%)a
entry
catalysts
solvents
time
1
PtCl2
PtCl4
PtCl4
PtCl4
AuCl
AuCl
AuCl
yes
yes
yes
yes
yes
yes
yes
DCE
DCE
65
65
65
23
23
65
65
23
65
65
65
65
65
65
65
65
110
<12 h
3 h
0
the transformation can pose a challenge in terms of scale
and operational convenience. Mascaren˜as’s report10 intrigued
us because of their usage of PtCl2/CO in catalyzing a [4 +
3] cycloaddition of allenes. More significantly, they also
documented that a different catalyst [AuCl] could effectively
direct the reactivity toward the competing [4 + 2] cycload-
dition instead of the [4 + 3] cycloaddition. Recently, Toste11
revealed a similar divergence in [4 + 2] versus [4 + 3]
cycloaddition when using different ligands along with a Au(I)
catalyst. Our own efforts in exploring Mascaren˜as’s PtCl2
versus AuCl protocol10,12,13 while adopting allenamides led
us to an interesting and different direction than the initially
anticipated issues regarding competing [4 + 3] and [4 + 2]
2
13c
15c
11c
66
3
THF
6 h
4
toluene
DCEb
THF
1 h
10 min
6 h
<30 min
1 h
10 min
6 h
6 h
6 h
<12 h
<12 h
8 h
30 h
20 h
5
6
35c
42c
16c
0
7
toluene
DCE
8
AuCl/AgSbF6 yes
9
AuCl3
AgSbF6
AgBF4
AgBF4
AgBF4
CSAd
PPTSd
no
yes
yes
yes
yes
yes
yes
yes
yes
no
DCE
10
11
12
13
14
15
16
17
DCE
85c
94
DCE
toluene
THF
80c
57c
92c
94c
91c
93
DCE
DCE
THF
no
d8-toluene
a Isolated yields unless otherwise indicated. b DCE: 1,2-dichloroethane.
c NMR yields determined with phenanthrene as the internal standard. d 10
mol % was used.
+
3
+ 2
cycloadditions (see 4-TS4
f 6 vs 4-TS4
f 7,
respectively, in Scheme 1). We report here a rare normal
electron-demand1,14-17 [4 + 2] cycloaddition involving
electron-rich heteroatom-substituted allenes under thermal
conditions and a stereoselective tandem propargyl amide
platinum catalysts (entries 1-4), and Au(III) catalyst (entry
9) were not useful in generating any cycloaddition types of
products. Concentrations did not appear to have any impact,
as reactions run at 0.04 M led to the same outcome.
(10) For a recent account on intramolecular [4 + 3] cycloadditions of
allenes using PtCl2, see: Trillo, B.; Lo´pez, F.; Gul´ıas, M.; Castedo, L.;
Mascaren˜as, J. L. Angew. Chem., Int. Ed. 2007, 47, 951. (b) Trillo, B.;
Lo´pez, F.; Montserrat, S.; Ujaque, G.; Castedo, L.; Lledo´s, A.; Mascaren˜as,
J. L. Chem.sEur. J. 2009, 15, 3336.
Most intriguingly, the illustration of the corresponding [4
+ 2] cycloadduct 10 shown in Table 1 has the benefit of
hindsight after a series of subsequent studies. As shown in
Figure 1, although 10 and its regioisomer 11 are readily
distinguishable, it is not obvious how to unambiguously
(11) Mauleo´n, P.; Zeldin, R. M.; Gonza´lez, A. Z.; Toste, F. D. J. Am.
Chem. Soc. 2009, 131, 6348.
(12) For a leading review on this chemistry, see: Nevado, C.; Echavarren,
A. M. Synthesis 2005, 167
.
(13) For reviews on platinum and gold chemistry, see: (a) Fu¨rstner, A.;
Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (b) Arcadi, A. Chem.
ReV. 2008, 108, 3266. (c) Shen, H. C. Tetrahedron 2008, 64, 3885. (d)
(18) When utilizing a Boc-substituted allenamide (see i), reactions
promoted by PtCl2, PtCl4, AuCl, or AuCl3 (in 10-100 mol % at rt to 65
°C) led to very low yields of possible cycloadduct (ii) with mostly hydrolysis
of the starting allenamide and decomposition. Only when using AgSbF6
was a modest yield attained for cycloadduct ii.
Shen, H. C. Tetrahedron 2008, 64, 7847
.
(14) For a compendium on chemistry of allenes, see: Krause, N.; Hashmi,
A. S. K. Modern Allene Chemistry; Wiley-VCH Verlag GmbH & Co.
KGaA: Weinheim, 2004; Vols. 1 and 2
(15) For a leading reference on normal electron-demand Diels-Alder
cycloadditions of allenamides generated in situ, see: Lee, M.; Morimoto,
.
H.; Kanematsu, K. Tetrahedron 1996, 52, 8169
(16) For an example using N-allenylsulfenimide, see: Bacci, J. P.;
Greenman, K. L.; van Vranken, D. L. J. Org. Chem. 2003, 68, 4955
.
.
(17) For some examples of normal electron-demand Diels-Alder cy-
cloadditions of allenoethers, see: (a) Hayakawa, K.; Aso, K.; Shiro, M.;
Kanematsu, K. J. Am. Chem. Soc. 1989, 111, 5312. (b) Wu, H.-J.; Liu,
C.-F.; Fang, Z.; Lin, H.-C. Tetrahedron Lett. 2007, 48, 6192, and references
cited therein. (c) For an example of allenyl sulfides, see Yeo, S.-K.; Shiro,
(19) See Supporting Information.
(20) (a) Wei, L.-L.; Mulder, J. A.; Xiong, H.; Zificsak, C. A.; Douglas,
C. J.; Hsung, R. P. Tetrahedron 2001, 57, 459. (b) Xiong, H.; Hsung, R. P.;
Wei, L.-L.; Berry, C. R.; Mulder, J. A.; Stockwell, B. Org. Lett. 2000, 2,
2869.
M.; Kanematsu, K. J. Org. Chem. 1994, 59, 1621
.
Org. Lett., Vol. 11, No. 15, 2009
3431