3662
H.-R. Zuo et al. / Inorganica Chimica Acta 362 (2009) 3657–3662
network structure, respectively. The Ni(III) ions for 2 form a uni-
1.0
0.8
0.6
0.4
0.2
0.0
form 1D zigzag magnetic chain through Niꢁ ꢁ ꢁS, Niꢁ ꢁ ꢁNi, or
p p
ꢁ ꢁ ꢁ
interactions with Niꢁ ꢁ ꢁNi distance of 4.024 Å. Magnetic susceptibil-
ity measurements in the temperature range 2–300 K show that 1 is
expected to be diamagnetic, and 2 exhibits an interesting spin-gap
transition (D/kb = 460.6 K) around 155 K.
2.0
1.5
1.0
0.5
0.0
T = 154.6 K
5. Supplementary material
CCDC 711693 and 711694 contain the supplementary crystallo-
graphic data for this paper. These data can be obtained free of
charge from the Cambridge Crystallographic Data Center, via
0
60 120 180 240 300
T (K)
Acknowledgements
50
0
100
150
T (K)
200
250
300
The authors thank the Science and Technology Project (No.
2008B080701011) from Guangdong Science and Technology
Department and the President’s Science Foundation of South China
Agricultural University (No. 2008X015) for financial support of this
work.
Fig. 5. Plot of
vm vs. T for 2 (inset: the plot d(vmT)/dT vs. T) (the red solid lines are
reproduced from the theoretic calculations and detailed fitting procedure described
in the text). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
References
value expected for a s = 1/2 Ni(III) system (0.375 emu K molꢀ1).
When the temperature decreases, the value of vm slightly de-
creases. While below 155 K, the vm values decrease exponentially
(Fig. 5), indicating that 2 exhibits the characteristics of a spin gap
system [26–29]. On increasing of temperature from 2 K back to
[1] M.E. Itkis, X. Chi, A.W. Corde, R.C. Haddon, Science 296 (2002) 1443.
[2] W. Fujita, K. Awaga, Science 286 (1999) 261.
[3] O. Kahn, C.J. Martinez, Science 297 (1998) 44.
[4] P. Gutlich, Y. Garcia, T. Woike, Coord. Chem. Rev. 219 (2001) 839.
[5] A.T. Coomber, D. Beljonne, R.H. Friend, J.L. Bredas, A. Charlton, N. Robertson,
A.E. Underhill, M. Kurmoo, P. Day, Nature 380 (1996) 144.
[6] C.L. Ni, D.Y. Song, Q.J. Meng, Chem. Phys. Lett. 419 (2006) 351.
[7] N. Robertson, L. Cronin, Coord. Chem. Rev. 227 (2002) 93.
[8] J. Nishijo, E. Ogura, J. Yamaura, A. Miyazaki, T. Enoki, T. Takano, Y. Kuwatani, M.
Iyoda, Solid State Commun. 116 (2000) 661.
[9] J.L. Xie, X.M. Ren, Y. Song, W.W. Zhang, W.L. Liu, C. He, Q.J. Meng, Chem.
Commun. (2002) 2346.
[10] M. Ren, Q.J. Meng, Y. Song, C.L. Lu, C.J. Hu, X.Y. Chen, Z.L. Xue, Inorg. Chem. 41
(2002) 5931.
[11] C.L. Ni, D.B. Dang, Y.Z. Li, S. Gao, Z.P. Ni, Z.F. Tian, Q.J. Meng, J. Solid State Chem.
178 (2005) 100.
[12] X.M. Ren, S. Nishihara, T. Akutagawa, S. Noro, T. Nakamura, W. Fujita, K.
Awaga, Chem. Phys. Lett. 418 (2006) 423.
300 K, the same
vm-T curves are obtained without hysteresis that
indicates that 1 undergoes a reversible spin transition. The spin
transition temperature is evaluated as the temperature at the max-
imum of the d(
v
mT)/dT derivative, that is, ꢃ155 K for 1 (inset of
Fig. 5). The magnetic susceptibility for 2 may be simulated by
the formula [30]:
vm
¼
a
expðꢀ
D
=kbTÞ=T þ C=T þ v0
ð1Þ
where
energy,
a is a constant corresponding to the dispersion of excitation
D
is the magnitude of the spin gap, kb is the Boltzmann con-
stant, C is a constant corresponding to the contribution of the mag-
netic impurity, 0 contributes from the core diamagnetism and the
[13] C.L. Ni, J.R. Zhou, Z.F. Tian, Z.P. Ni, Y.Z. Li, Q.J. Meng, Inorg. Chem. Commun. 10
(2007) 880.
v
[14] C.L. Ni, L.L. Yu, L.M. Yang, Inorg. Chim. Acta 359 (2006) 1383.
[15] C.L. Ni, X.P. Liu, L.L. Yu, L.M. Yang, J. Phys. Chem. Solids 68 (2007) 59.
[16] Y. Hou, C.L. Ni, J.R. Zhou, X.P. Liu, L.L. Yu, L.M. Yang, Synth. Met. 158 (2008) 379.
[17] S.B. Bulgarevich, D.V. Bren, D.Y. Movshovic, P. Finocchiaro, S. Failla, J. Mol.
Struct. 317 (1994) 147.
[18] A. Davison, R.H. Holm, Inorg. Synth. 10 (1967) 8.
[19] G.M. Sheldrick, SADABS, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
[20] Brucker, SMART and SAINT, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.
[21] SHELXTL, Version 5.10. Structure Determination Software Programs, Bruker
Analytical X-ray Systems Inc., Madison, Wisconsin, USA, 2000.
[22] C.L. Ni, Y.P. Zheng, L.L. Yang, Y.Z. Li, J. Coord. Chem. 59 (2006) 1037.
[23] S.B. Yang, C.L. Ni, Acta Cryst. E62 (2006) m483.
[24] M.K. Johnson, Vibrational Spectra of Dithiolene Complexes in Dithiolene
Chemistry, Progress in Inorganic Chemistry, John Wiley & Sons Inc., New York,
2004.
[25] S.I. Shupack, E. Billig, R.J.H. Clark, R. Williams, H.B. Gray, J. Am. Chem. Soc. 86
(1964) 4594.
possible Van Vleck paramagnetism. As observed in Fig. 5 (the red
solid line), Eq. (1) provides a good fit of experimental data within
the range of 2.0–155 K for
2 with a = 1.99, D/kb = 460.6 K,
v
0 = 3.0 ꢂ 10ꢀ5 emu molꢀ1
,
C = 2.0 ꢂ 10ꢀ5 emu K molꢀ1
,
and
R = 1.1 ꢂ 10ꢀ6 (R is defined as
R
(vmꢀ
vmobsd)2/(vmobsd)2). The
calcd
value of the parameter 2D/kbTc (Tc is the transition temperature)
is estimated to be 5.96 for 1, which is larger than the ideal value
of 3.53 derived from the BCS formula in a weak coupling regime.
The magnetic coupling between [Ni(mnt)2]ꢀ anions is very sensitive
to the overlap fashion of neighboring [Ni(mnt)2]ꢀ anions and inter-
molecular contacts [5,31]. On the temperature is lowered, the non-
uniform compression of the magnetic chain and slippage of the
[Ni(mnt)2]ꢀ stack due to the anisotropic contraction of the crystal
result in the magnetic exchange constant changing and trigger a
spin-gap transition [32].
[26] C. Yasuda, S. Todo, M. Matsumoto, H. Takayama, J. Phys. Chem. Solids 63
(2002) 1607.
[27] S. Nishihara, T. Akutagawa, T. Hasegawa, T. Nakamura, Chem. Commun. (2002)
408.
[28] S. Nishihara, T. Akutagawa, T. Hasegawa, S. Fujiyama, T. Nakamura, J. Solid
State Chem. 168 (2002) 661.
[29] Y. Fujii, T. Goto, W. fujita, K. Awaga, Physica B 329–333 (2003) 973.
[30] L.C. Isett, D.M. Rosso, G.L. Bottger, Phys. Rev. B 22 (1980) 4739.
[31] Z.P. Ni, X.M. Ren, J. Ma, J.L. Xie, C.L. Ni, Z.D. Chen, Q.J. Meng, J. Am. Chem. Soc.
127 (2005) 14330.
[32] X.M. Ren, S. Nishihara, T. Akutagawa, S. Noro, T. Nakamura, W. Fujita, K.
Awaga, Z.P. Ni, J.L. Xie, Q.J. Meng, R.K. Kremer, J. Chem. Soc. Dalton Trans.
(2006) 1988.
4. Conclusion
In summary, two new ion-pair complexes, [FBrBzPyN(CH3)2]2
[Ni(mnt)2] (1) and [FBrBzPyN(CH3)2][Ni(mnt)2] (2) has been pre-
pared and characterized by single crystal X-ray diffraction and
magnetic measurements. Compounds 1 and 2 form a 2D and 3D