L. L. Johnson, Jr., T. A. Houston / Tetrahedron Letters 43 (2002) 8905–8908
Table 1. Glycosidase inhibition at 1.0 mM inhibitor concentration
8907
Compds
E. coli b-galactosidase
Coffee bean a-galactosidase
Jack bean a-mannosidase
8
9
75–86
13
(10)
NI
B5
10
12
13
NI
45–55
NI
B5
(B5)
NT
NI
10
NT
Boric acid
Values are expressed as a percentage of activity lost (gained) in the presence of inhibitor. Results are from three independent determinations where
values fall within 5% range unless a range is noted. UV assays were performed at the enzyme’s optimal pH with requisite p-nitrophenylglycoside
substrates (NI, no inhibition; NT, not tested).
anomeric diazomethane derivative of galactose,24 and is
believed to participate as a nucleophile during carbohy-
drate hydrolysis in the absence of Glu-461.25 The elec-
trophilic site of the C-galactosyl affinity label used by
Sinnott24 is roughly similar to the position of the
boronate in 8 and 13. Alternatively, the boronate might
form a cyclic ester with the C-5/C-6 vicinal diol to create
the active species.26 Nonetheless, the specificity change
that the boronic acid imparts on 1, a selective mannosi-
dase inhibitor (Ki=1.2×10−4 M versus human liver
lysosomal a-mannosidase), is dramatic (8: Ki=2.0×10−4
M versus b-galactosidase) and should prove an effective
way to enhance other, more potent b-galactosidase
inhibitors.
9. (a) Joubert, P. H.; Bam, W. J.; Manyane, N. Eur. J. Clin.
Pharmacol. 1986, 30, 253. For general reviews, see: (b)
Winchester, B.; Fleet, G. W. J. J. Carbohydr. Chem. 2000,
19, 471; (c) Hausler, H.; Kawakami, R. P.; Mlaker, E.;
Severn, W. B., Wrodnigg, T. M.; Stutz, A. E. J. Carbo-
hydr. Chem. 2000, 19, 435; (d) Dwek, R. A.; Butters, T.
D.; Platt, F. M.; Zitzmann, N. Nature Rev. Drug Disc.
2002, 1, 65.
10. Fuhrmann, U.; Bause, E.; Ploegh, H. Biochim. Biophys.
Acta 1985, 825, 95.
11. Ganem, B. Acc. Chem. Res. 1996, 29, 340.
12. Sears, P.; Wong, C.-H. Chem. Commun. 1998, 1161.
13. Bols, M.; Lillelund, V. H.; Jensen, H. H.; Liang, X.
Chem. Rev. 2002, 102, 515.
14. (a) Dale, M. P.; Ensley, H. E.; Kern, K.; Sastry, K. A.
R.; Byers, L. D. Biochemistry 1985, 24, 3530; (b) Noten-
boom, V.; Williams, S. J.; Hoos, R.; Withers, S. G.; Rose,
D. R. Biochemistry 2000, 39, 11553; (c) See also: Jeong,
J.-H.; Murray, B. W.; Takayama, S.; Wong, C.-H. J. Am.
Chem. Soc. 1996, 118, 4227.
Acknowledgements
Financial support from the Mary Kapp Fund (VCU),
Jeffress Memorial Trust, and Horsley Cancer Fund
(Virginia Academy of Sciences) is gratefully acknowl-
edged. We appreciate productive discussions with Dr.
Evelyn Wolff (Insmed, Inc.) regarding the enzyme assays.
15. Fleet, G. W. J.; Son, J. C.; Green, D. S. C.; di Bello, I.
C.; Winchester, B. Tetrahedron 1988, 44, 2649.
16. Gray, C. W., Jr.; Houston, T. A. J. Org. Chem. 2002, 67,
5426.
17. Al Daher, S.; Fleet, G.; Namgoong, S. K.; Winchester, B.
References
Biochem. J. 1989, 258, 613.
18. Fleet, G. W. J.; Nicholas, S. J.; Smith, P. W.; Evans, S.
V.; Fellows, L. E.; Nash, R. J. Tetrahedron Lett. 1985, 26,
3127.
1. Feizi, T.; Larkin, M. Glycobiology 1990, 1, 17.
2. Hakomori, S. Adv. Cancer Res. 1989, 52, 257.
3. Humphries, M. J.; Matsumoto, K.; White, S. L.; Olden,
K. Proc. Natl. Acad. Sci. USA 1986, 83, 1752.
4. Pili, R.; Chang, J.; Partis, R. A.; Mueller, R. A.; Chrest,
F. J.; Passaniti, A. Cancer Res. 1995, 55, 2920.
5. Gruters, R. A.; Neefjes, J. J.; Tersmette, M.; de Goede,
R. E. Y.; Tulp, A.; Huisman, H. G.; Miedema, F.;
Ploegh, H. L. Nature (London) 1987, 330, 74.
6. Walker, B. D.; Kowalski, M.; Goh, W. C.; Kozarsky, K.;
Krieger, M.; Rosen, C.; Rohrschneider, L.; Haseltine, W.
A.; Sodroski, J. Proc. Natl. Acad. Sci. USA 1987, 84,
8120.
19. Huber, R. E.; Gaunt, M. T. Arch. Biochem. Biophys.
1983, 220, 263.
20. (a) Torssell, K. Ark. Kemi. 1957, 10, 529; (b) Antonov, V.
K.; Ivaniva, T. V.; Berezin, I. V.; Martinek, K. FEBS
Lett. 1970, 7, 23.
21. Phillip, M.; Bender, M. L. Proc. Natl. Acad. Sci. USA
1971, 68, 478.
22. Kettner, C. A.; Shenvi, A. B. J. Biol. Chem. 1984, 259,
15106.
23. Jacobson, R. H.; Zhang, X.-J.; DuBose, R. F.; Matthews,
B. W. Nature (London) 1994, 369, 761.
7. Karpas, A.; Fleet, G. W. J.; Dwek, R. A.; Petursson, S.;
Namgoong, S. K.; Ramsden, N. G.; Jacob, G. S.;
Rademacher, T. W. Proc. Natl. Acad. Sci. USA 1988, 85,
9229.
8. von Itzstein, M.; Wu, W.-Y.; Kok, G. B.; Pegg, M. S.;
Dyason, J. C.; Jin, B.; Phan, T. V.; Smythe, M. L.;
White, H. F.; Oliver, S. W.; Colman, P. M.; Varghese, J.
N.; Ryan, D. M.; Woods, J. M.; Bethell, R. C.; Hotham,
V. J.; Cameron, J. M.; Penn, C. R. Nature (London) 1993,
363, 418.
24. Sinnott, M. L. FEBS Lett. 1973, 94, 1.
25. Sinnott, M. L. Chem. Rev. 1990, 90, 1171.
26. The 11B NMR spectrum of 8 in D2O is simple at pD 2.0,
but becomes complex above pD 7.0 indicative of free
amine-catalyzed esterification of the boronate. The
hydrochloride salts 8, 9, 12 and 13 were collected by
filtration and deemed of sufficient purity (>95% by 1H
NMR) for use in the initial enzyme assays. Compound 8
was purified by precipitation with HCl in Et2O for deter-
mining its Ki value versus b-galactosidase. N-(Propyl-3-