C. Dragonetti et al. / Chemical Physics Letters 475 (2009) 245–249
249
octupolar complex 2 is in complete contrast with the theoretical
References
predictions. The ZINDO-SOS calculations predict two maxima
(see Table 1): the first one belongs to the same transition observed
in the OPA spectrum and shows a cross section that is eight times
more intense than the one calculated for the free ligand 1
(EF = 2.8), the second one is due to a TPA allowed transition and
has an even more intense cross section (EF = 6.7). The theoretical
prediction of a tremendous enhancement of the TPA cross section,
due to a strong interaction among the ligands in the octupolar
compound, is totally disattended by our experimental data which
show only one TPA maximum whose cross section is just three
time more intense than the one of ligand 1. The TPA cross section
of compound 2 in CH2Cl2 has been also measured with the Z-scan
technique at two wavelengths: 765 and 965 nm, as reported in Ta-
ble 1 [40]. The TPA cross section at 965 nm is outside the range that
we can explore, whereas the one at 765 nm can be compared with
our measurements. At 765 nm there is not a maximum in our spec-
trum, the rTPA is just 200 GM, strongly lower than the value of
1700 GM obtained with the Z-scan technique. However it is known
that the TPA cross section measured with these two techniques can
differ markedly when different two-photon processes can contrib-
ute to the rTPA value. The TPE technique is sensitive to just the
purely coherent two-photon absorption process, while Z-scan can
also be affected by sequential two-photon absorption, arising from
the first excited state. The probability of the latter mechanism in-
creases as the one-photon transition is approached [47].
[1] See recent review G.S. He, L.-S. Tan, Q. Zheng, P.N. Prasad, Chem. Rev. 108
(2008) 1245.
[2] W. Denk, J.H. Strickler, W.W. Webb, Science 248 (1990) 73.
[3] P.M. Rentzepis, D.A. Parthenopoulos, Science 245 (1989) 843.
[4] B.H. Cumpston et al., Nature 398 (1999) 51.
[5] M. Parent, O. Mongin, K. Kamada, C. Katan, M. Blanchard-Desce, Chem.
Commun. (2005) 2029.
[6] J. Swiatkiewicz, P.N. Prasad, B.A. Reinhardt, Opt. Commun. 157 (1998) 135.
[7] C. Le Droumaguet, O. Mongin, M.H.V. Wertz, M. Blanchard-Desce, Chem.
Commun. (2005) 2802.
[8] S. Charier, O. Ruel, J.B. Baudin, D. Alcor, J.F. Allemand, A. Meglio, L. Jullien,
Angew. Chem., Int. Ed. 43 (2004) 4785.
[9] B.A. Reinhardt et al., Chem. Mater. 10 (1998) 1863.
[10] L. Ventelon, L. Moreaux, J. Mertz, M. Blanchard-Desce, Chem. Commun. (1999)
2055.
[11] M. Rumi et al., J. Am. Chem. Soc. 122 (2000) 9500.
[12] O.-K. Kim, K.-S. Lee, H.Y. Woo, K.-S. Kim, G.S. He, J. Swiatkiewicz, P.N. Prasad,
Chem. Mater. 12 (2000) 284.
[13] L. Ventelon, S. Charier, L. Moreaux, J. Mertz, M. Blanchard-Desce, Angew.
Chem., Int. Ed. 40 (2001) 2098.
[14] O. Mongin, L. Porrès, L. Moreaux, J. Mertz, M. Blanchard-Desce, Org. Lett. 4
(2002) 719.
[15] A. Abbotto et al., Org. Lett. 4 (2002) 1495.
[16] W.J. Yang, D.Y. Kim, M.-Y. Jeong, H.M. Kim, S.-J. Jeon, B.R. Cho, Chem. Commun.
(2003) 2618.
[17] Y. Iwase, K. Kamada, K. Ohta, K. Kondo, J. Mater. Chem. 13 (2003) 1575.
[18] M.H.V. Werts, S. Gmouh, O. Mongin, T. Pons, M. Blanchard-Desce, J. Am. Chem.
Soc. 126 (2004) 16294.
[19] B.R. Cho et al., J. Am. Chem. Soc. 123 (2001) 10039.
[20] W.-H. Lee, H. Lee, J.-A. Kim, J.-H. Choi, M. Cho, S.-J. Jeon, B.R. Cho, J. Am. Chem.
Soc. 123 (2001) 10658.
[21] L. Porrès, O. Mongin, C. Katan, M. Charlot, T. Pons, J. Mertz, M. Blanchard-Desce,
Org. Lett. 6 (2004) 47.
[22] W.J. Yang, D.Y. Kim, C.H. Kim, M.-Y. Jeong, S.K. Lee, S.-J. Jeon, B.R. Cho, Org. Lett.
6 (2004) 1389.
4. Concluding remarks
[23] S.-J. Chung, K.-S. Kim, T.-C. Lin, G.S. He, J. Swiatkiewicz, P.N. Prasad, J. Phys.
Chem. B 103 (1999) 10741.
[24] A. Adronov, J.M.J. Fréchet, G.S. He, K.-S. Kim, S.-J. Chung, J. Swiatkiewicz, P.N.
Prasad, Chem. Mater. 12 (2000) 2838.
[25] M. Drobizhev, A. Karotki, A. Rebane, C.W. Spangler, Opt. Lett. 26 (2001) 1081.
[26] S.-J. Chung et al., Chem. Mater. 13 (2001) 4071.
[27] J. Yoo, S.K. Yang, M.-Y. Jeong, H.C. Ahn, S.-J. Jeon, B.R. Cho, Org. Lett. 5 (2003)
645.
[28] A. Abbotto et al., Chem. Commun. (2003) 2144.
[29] O. Mongin, J. Brunel, L. Porrès, M. Banchard-Desce, Tetrahedron Lett. 44 (2003)
2813.
[30] M. Drobizhev, A. Karotki, Y. Dzenis, A. Rebane, Z. Suo, C.W. Spangler, J. Phys.
Chem. B 107 (2003) 7540.
[31] O. Mongin, L. Porrès, C. Katan, T. Pons, J. Mertz, M. Blanchard-Desce,
Tetrahedron Lett. 44 (2003) 8121.
[32] M.P. Cifuentes, M.G. Humphrey, J.P. Morrall, M. Samoc, F. Paul, C. Lapinte, T.
Roisnel, Organometallics 17 (2005) 4280.
This study puts in evidence the large unexpected TPA activity of
the simple and easily prepared dipolar neutral [ZnY2(NBu2bipy)]
complexes, which appear as very attractive building blocks for
the design of TPA materials with practical applications. It opens a
new route for the design of TPA active convenient dipolar metal
complexes and it represents a springboard even for the design of
photoswitchable materials. In fact, an efficient photoswitching of
the TPA properties of dipolar photochromic Zn(II) complexes is ex-
pected on the basis of their second order nonlinear optical proper-
ties [48] and on the prediction that an increase of either the
conjugated chain length of the bipyridine ligands or the acceptor
properties of the Zn(II) center by a careful choice of the ancillary
ligands would improve the TPA properties of these Zn(II)
complexes.
[33] Q. Zheng, G.S. He, P.N. Prasad, J. Mater. Chem. 15 (2005) 579.
[34] S. Righetto et al., J. Mater. Chem. 16 (2006) 1439.
[35] G.J. Zhou, W.Y. Wong, Z. Lin, C. Ye, Angew. Chem., Int. Ed. 45 (2006) 6189.
[36] S. Das, A. Nag, D. Goswami, P.K. Bharadwaj, J. Am. Chem. Soc. 128 (2006)
402.
Acknowledgements
[37] B.J. Coe, M. Samoc, A. Samoc, L. Zhu, Y. Yi, Z. Shuai, J. Phys. Chem. A 111 (2007)
472.
[38] X.-B. Zhang, J.-K. Feng, A.-M. Ren, J. Phys. Chem. A 111 (2007) 1328.
[39] X.-J. Liu, J.-K. Feng, A.-M. Ren, H. Cheng, X. Zhou, J. Chem. Phys. 120 (2004)
11493.
[40] C. Feuvrie et al., J. Phys. Chem. A 111 (2007) 8980.
[41] S. Mazzucato et al., Phys. Chem. Chem. Phys. 9 (2007) 2999.
[42] K. Sénéchal, O. Maury, H. Le Bozec, I. Ledoux, J. Zyss, J. Am. Chem. Soc. 124
(2002) 4560.
This work was supported by the Consorzio INSTM (PRISMA
2005), by MIUR (FIRB 2003 RBNE033KMA and PRIN 2006
n.2006031511) and by CNR (PROMO 2006). COST Action D35 is
also acknowledge. We deeply thank Dr Danika Locatelli for exper-
imental help.
[43] N. Demas, G.A. Crosby, J. Phys. Chem. 75 (1971) 991.
[44] N. Klonis, W.H. Sawyer, J. Fluoresc. 6 (1996) 147.
[45] R.F. Kubin, A.N. Fletcher, Chem. Phys. Lett. 99 (1983) 49.
[46] C. Xu, R.M. William, W. Zipfel, W.W. Webb, Bioimag. 4 (1996) 198.
[47] R. Signorini et al., J. Phys. Chem. A 112 (2008) 4224.
[48] V. Aubert, V. Guerchais, E. Ishow, K. Hoang-Thi, I. Ledoux, K. Nakatani, H. Le
Bozec, Angew. Chem., Int. Ed. 47 (2008) 577.
Appendix A. Supplementary material
One photon absorption and emission spectra of the octupolar
complex 2 (Fig. A1) and of the dipolar complex 4 (Fig. A2) in
dichloromethane.
Supplementary data associated with this article can be found, in