Hongyin Gao and Junliang Zhang
COMMUNICATIONS
times. The combined organic layers were washed with satu-
rated brine solution and dried over MgSO4. After filtration
and evaporation, the residue was purified by column chro-
matography on silica gel (DCM:EtOAc=5:1) to afford 8a;
yield: 102.6 mg (93%).
[3] a) N. Asao, T. Nogami, K. Takahashi, Y. Yamamoto, J.
Am. Chem. Soc. 2002, 124, 764; b) N. Asao, K. Takaha-
shi, S. Lee, T. Kasahara, Y. Yamamoto, J. Am. Chem.
Soc. 2002, 124, 12650; c) N. Asao, T. Nogami, S. Lee, Y.
Yamamoto, J. Am. Chem. Soc. 2003, 125, 10921; d) N.
Asao, T. Kasahara, Y. Yamamoto, Angew. Chem. 2003,
115, 3628; Angew. Chem. Int. Ed. 2003, 42, 3504; e) N.
Asao, H. Aikawa, Y. Yamamoto, J. Am. Chem. Soc.
2004, 126, 7548.
[4] a) J. Barluenga, H. Vꢂzquez-Villa, A. Ballesteros, J. M.
Gonzꢂlez, J. Am. Chem. Soc. 2003, 125, 9028; b) J. Bar-
luenga, H. Vꢂzquez-Villa, A. Ballesteros, J. M. Gon-
zꢂlez, Org. Lett. 2003, 5, 4121; c) J. Barluenga, H.
Vꢂzquez-Villa, I. Merino, A. Ballesteros, J. M. Gon-
zꢂlez, Chem. Eur. J. 2006, 12, 5790.
[5] a) Q. Huang, J. A. Hunter, R. C. Larock, Org. Lett.
2001, 3, 2973; b) G. Dai, R. C. Larock, Org. Lett. 2001,
3, 4035; c) Q. Huang, J. A. Hunter, R. C. Larock, J.
Org. Chem. 2002, 67, 3437; d) G. Dai, R. C. Larock, J.
Org. Chem. 2002, 67, 7042; e) Q. Huang, R. C. Larock,
J. Org. Chem. 2003, 68, 980; f) G. Dai, R. C. Larock, J.
Org. Chem. 2003, 68, 920.
[6] 1,2-Allenes, 1,3-dienes and 4H-pyrans could be pro-
duced selectively by reacting electron-deficient 1,3-con-
jugated enynes with different nucleophiles, see: X. Yu,
H. Ren, Y. Xiao, J. Zhang, Chem. Eur. J. 2008, ASAP.
[7] During our study of this PSCR, Ag(I)-catalyzed cycli-
zation of ortho-alkynylaryl aldehyde oxime leading to
isoquinoline N-oxides was published by Seunghoon
Shin, see: H.-S. Yeom, S. Kim, S. Shin, Synlett 2008,
924; for an electrophiles-mediated version of this cycli-
zation to afford the corresponding 4-halide-isoquino-
line N-oxides, see: Q. Ding, J. Wu, Adv. Synth. Catal.
2008, 350, 1850.
[8] Functionalized isoquinolines are an important class of
heterocylic compounds with many bioactive activities,
see: a) The Chemistry of Heterocyclic Compounds: Iso-
qinolines, (Eds.: G. M. Coppola, H. F. Schuster), John
Wiley & Sons, New York, 1981, Vol. 38, Part 3; b) M.
Croisy-Delcey, A. Croisy, D. Carrez, C. Huel, A. Chiar-
oni, P. Durot, E. Bisagni, L. Jin, G. Leclerq, Bioorg.
Med. Chem. 2000, 8, 2629; thus, many chemists have
kept their research interest on it, for selected recent re-
sults, see: c) ref.[5]; d) S. G. Lim, J. H. Lee, C. W. Moon,
J.-B. Hong, C. H. Jun, Org. Lett. 2003, 5 2759; e) T.
Konno, J. Chae, T. Miyabe, T. Ishihara, J. Org. Chem.
2005, 70, 10172; f) R. P. Korivi, C.-H. Cheng, Org. Lett.
2005, 7, 5179; g) R. Alonso, P. J. Campos, B. Garcꢃa,
M. A. Rodrꢃguez, Org. Lett. 2006, 8, 3521; h) D. Fisch-
er, H. Tomeba, N. K. Pahadi, N. T. Patil, Y. Yamamoto,
Angew. Chem. 2007, 119, 4848; Angew. Chem. Int. Ed.
2007, 46, 4764.
Supporting Information
1
Experimental details and copies of H/13C NMR spectra of
all new compounds are available as supporting information.
Acknowledgements
We are grateful to National Natural Science Foundation of
China (20702015) and Shanghai Municipal Committee of
Sciences and Technology (07pj14039) for financial support.
This work was also sponsored by Shanghai Shuguang Pro-
gram (07SG27) and Shanghai Leading Academic Discipline
Project (B409).
References
[1] Product selectivity control is an important issue in or-
ganic synthesis, for recent reviews, see: a) J.-J. Brunet,
R. Poli, Chemtracts 2004, 17, 381; b) M. Beller, J.
Seayad, A. Tillack, H. Jiao, Angew. Chem. 2004, 116,
3448; Angew. Chem. Int. Ed. 2004, 43, 3368; c) M.
Schlosser, F. Mongin, Chem. Soc. Rev. 2007, 36, 1161;
d) M. T. Reetz, Angew. Chem. 2008, 120, 2592; Angew.
Chem. Int. Ed. 2008, 47, 2556; for selected examples
since 2005, see: e) S. Kamijo, C. Kanazawa, Y. Yama-
moto, J. Am. Chem. Soc. 2005, 127, 9260; f) N. P. Grim-
ster, C. Gauntlett, C. R. A. Godfrey, M. J. Gaunt,
Angew. Chem. 2005, 117, 3185; Angew. Chem. Int. Ed.
2005, 44, 3125; g) V. I. Timokhin, S. S. Stahl, J. Am.
Chem. Soc. 2005, 127, 17888; h) S. Chaudhury, W. A.
Donaldson, J. Am. Chem. Soc. 2006, 128, 5984; i) E. M.
Beck, N. P. Grimster, R. Hatley, M. J. Gaunt, J. Am.
Chem. Soc. 2006, 128, 2528; j) R. Shintani, W.-L. Duan,
T. Hayashi, J. Am. Chem. Soc. 2006, 128, 5268; k) S.
Brandau, E. Maerten, K. A. Jørgensen, J. Am. Chem.
Soc. 2006, 128, 14986; l) L.-C. Campeau, M. Bertrand-
Laperle, J. P. Leclerc, E. Villemure, S. Gorelsky, K.
Fagnou, J. Am. Chem. Soc. 2008, 130, 3276.
[2] Many chemists have contributed to this field, but only
1–2 typical examples were selected here from each
group, see: a) G. Dyker, D. Hildebrandt, J. Liu, K.
Merz, Angew. Chem. 2003, 115, 4536; Angew. Chem.
Int. Ed. 2003, 42, 4399; b) N. Asao, K. Iso, S. Yudha S,
Org. Lett. 2006, 8, 4149; c) N. Asao, H. Aikawa, J. Org.
Chem. 2006, 71, 5249; d) D. Yue, N. Della Ca, R. C.
Larock, J. Org. Chem. 2006, 71, 3381; e) X. Yao, C.-J.
Li. Org. Lett. 2006, 8, 1953; f) Q. Ding, B. Wang, J.
Wu, Org. Lett. 2007, 9, 4959; g) K. Gao, J. Wu, J. Org.
Chem. 2007, 72, 8611; h) S. Obika, H. Kono, Y. Yasui,
R. Yanada, Y. Takemoto, J. Org. Chem. 2007, 72, 4462;
imine analogue, see: i) N. Asao, S. Y. S. T. Nogami, Y.
Yamamoto, Angew. Chem. 2005, 117, 5662; Angew.
Chem. Int. Ed. 2005, 44, 5526.
[9] Methods for synthesis of isoquinolin-1(2H)-ones, see:
a) V. R. Batchu, D. K. Barange, D. Kumar, B. R. Sree-
kanth, K. Vyas, E. A. Reddy, M. Pal, Chem. Commun.
2007, 1966; b) J. F. Guastavino, S. M. Barolo, R. A.
Rossi, Eur. J. Org. Chem. 2006, 3898, and references
cited therein.
[10] B. M. Trost, A. C. Gutierrez, Org. Lett. 2007, 9, 1473.
88
ꢁ 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2009, 351, 85 – 88