LETTER
Resorcylic Acid Macrolactone Inhibitors of Hsp90
1569
(12) Roe, S. M.; Prodromou, C.; O’Brien, R.; Ladbury, J. E.;
Piper, P. W.; Pearl, L. H. J. Med. Chem. 1999, 42, 260.
(13) Dehner, A.; Furrer, J.; Richter, K.; Schuster, I.; Buchner, J.;
Kessler, H. ChemBioChem 2003, 4, 870.
(14) Ali, M. M. U.; Roe, S. M.; Vaughan, C. K.; Meyer, P.;
Panaretou, B.; Piper, P. W.; Prodromou, C.; Pearl, L. H.
Nature (London) 2006, 440, 1013.
(15) Delmotte, P.; Delmotteplaquee, J. Nature (London) 1953,
171, 344.
(16) Winssinger, N.; Barluenga, S. Chem. Commun. 2007, 22.
(17) Barluenga, S.; Dakas, P. Y.; Boulifa, M.; Moulin, E.;
Winssinger, N. C. R. Chim. 2008, 11, 1306.
(18) Hofmann, T.; Altmann, K. H. C. R. Chim. 2008, 11, 1318.
(19) Lampilas, M.; Lett, R. Tetrahedron Lett. 1992, 33, 773.
(20) Lampilas, M.; Lett, R. Tetrahedron Lett. 1992, 33, 777.
(21) Tichkowsky, I.; Lett, R. Tetrahedron Lett. 2002, 43, 3997.
(22) Tichkowsky, I.; Lett, R. Tetrahedron Lett. 2002, 43, 4003.
(23) Garbaccio, R. M.; Stachel, S. J.; Baeschlin, D. K.;
Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 10903.
(24) Barluenga, S.; Moulin, E.; Lopez, P.; Winssinger, N. Chem.
Eur. J. 2005, 11, 4935.
Figure 2 X-ray crystal structure of the ( )-resorcylic macrolactone
1735
(25) Proisy, N.; Sharp, S. Y.; Boxall, K.; Connelly, S.; Roe,
S. M.; Prodromou, C.; Slawin, A. M. Z.; Pearl, L. H.;
Workman, P.; Moody, C. J. Chem. Biol. 2006, 13, 1203.
(26) Yang, Z. Q.; Geng, X. D.; Solit, D.; Pratilas, C. A.; Rosen,
N.; Danishefsky, S. J. J. Am. Chem. Soc. 2004, 126, 7881.
(27) Barluenga, S.; Lopez, P.; Moulin, E.; Winssinger, N. Angew.
Chem. Int. Ed. 2004, 43, 3467.
(28) Cooper, T. S.; Atrash, B.; Sheldrake, P.; Workman, P.;
McDonald, E. Tetrahedron Lett. 2006, 47, 2241.
(29) Bauta, W. E.; Lovett, D. P.; Cantrell, W. R.; Burke, B. D.
J. Org. Chem. 2003, 68, 5967.
(DIAD), Ph3P and toluene] with 3-butenol and its 2-meth-
yl derivative, which gave the esters 15a and 15b in rea-
sonable yield (65–67%). The critical ring-closing
metathesis using Grubbs second-generation catalyst {ben-
zylidene[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinyl-
idene]dichloro(trichlorocyclohexylphosphine)ruthenium}
proceeded in good yield to give the macrolactones 16 iso-
lated as the E-isomer after chromatography. Cleavage of
the MOM groups could be achieved in good yield under
acidic conditions to give the previously synthesized
NP261 (3) and its novel methyl analogue, the resorcylic
macrolactone 17 (Scheme 3), the structure of which was
confirmed by X-ray crystallography (Figure 2).
(30) Shair, M. D.; Yoon, T. Y.; Mosny, K. K.; Chou, T. C.;
Danishefsky, S. J. J. Am. Chem. Soc. 1996, 118, 9509.
(31) 5-Chloro-6,8-bis(methoxymethoxy)isochroman-1,3-
dione (8)
Mp 96–98 °C. MS: m/z calcd for C13H1335ClNaO7: 339.0242;
found: 339.0229 [M + Na]. IR (CH2Cl2): nmax = 1796, 1756,
1593 cm–1. 1H NMR (400 MHz, CDCl3): d = 7.18 (1 H, s,
ArH), 5.48 (2 H, s, OCH2O), 5.39 (2 H, s, OCH2O), 4.20 (2
Thus, we have established a new route to the Hsp90 inhib-
itor 3 and its new analogue 17,34 that proceeds in an elev-
en-step linear sequence in an overall yield of 4%.
H, s, CH2), 3.53 (3 H, s, OCH3), 3.52 (3 H, s, OCH3). 13
C
NMR (100 MHz, acetone-d6): d = 165.3 (C), 160.6 (C),
159.2 (C), 157.1 (C), 137.7 (C), 114.6 (C), 107.1 (C), 103.4
(CH), 96.3 (CH2), 96.1 (C), 57.0 (CH3), 56.9 (CH3), 34.2
(CH2). ESI-MS: m/z (%) = 341/339 (23/69) [M + Na], 327
(14), 309 (15).
Acknowledgment
This work was supported by Cancer Research UK [CUK] grant
number C215/A7606.
(32) Shimamoto, T.; Chimori, M.; Sogawa, H.; Yamamoto, K.
J. Am. Chem. Soc. 2005, 127, 16410.
(33) Ethyl 2-[5-Chloro-6,8-bis(methoxymethoxy)-1-oxo-1H-
References and Notes
isochromen-3-yl]hept-6-enoate (13)
(1) Pearl, L. H.; Prodromou, C. Annu. Rev. Biochem. 2006, 75,
271.
(2) Pearl, L. H.; Prodromou, C.; Workman, P. Biochem. J. 2008,
410, 439.
(3) Workman, P. Cancer Lett. 2004, 206, 149.
(4) Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57.
(5) Powers, M. V.; Workman, P. FEBS Lett. 2007, 581, 3758.
(6) Bishop, S. C.; Burlison, J. A.; Blagg, B. S. J. Curr. Cancer
Drug Targets 2007, 7, 369.
(7) Solit, D. B.; Chiosis, G. Drug Discovery Today 2008, 13, 38.
(8) Taldone, T.; Gozman, A.; Maharaj, R.; Chiosis, G. Curr.
Opin. Pharm. 2008, 8, 370.
(9) Drysdale, M. J.; Brough, P. A. Curr. Top. Med. Chem. 2008,
8, 859.
(10) Taldone, T.; Sun, W.; Chiosis, G. Bioorg. Med. Chem. 2009,
17, 2225.
(11) Prodromou, C.; Roe, S. M.; O’Brien, R.; Ladbury, J. E.;
Piper, P. W.; Pearl, L. H. Cell 1997, 90, 65.
Mp 50–52 °C. MS: m/z calcd for C22H2735ClNaO8: 477.1292;
found: 477.1326 [M + Na]. IR (CH2Cl2): nmax = 2987, 1736,
1661, 1585 cm–1. 1H NMR (400 MHz, acetone-d6): d = 7.15
(1 H, s, ArH), 6.85 (1 H, s, ArH), 5.89–5.77 (1 H, m,
CH=CH2), 5.45 (2 H, s, OCH2O), 5.34 (2 H, s, OCH2O),
5.05–4.93 (2 H, m, CH=CH2), 4.18 (2 H, q, J = 7.1 Hz,
CO2CH2CH3), 3.66 (1 H, t, J = 7.5 Hz, CHCH2), 3.51 (3 H,
s, OCH3), 3.51 (3 H, s, OCH3), 2.13 (2 H, dt, J = 7.1, 7.5 Hz,
CH2), 2.00–1.89 (2 H, m, CH2), 1.49 (2 H, quin, J = 7.1,
CH2), 1.22 (2 H, q, J = 7.1 Hz, CO2CH2CH3). 13C NMR (100
MHz, CDCl3): d = 171.1 (C), 160.5 (C), 159.2 (C), 157.2
(C), 158.15 (C), 139.1 (CH), 138.6 (C), 115.3 (CH2), 110.9
(C), 105.9 (C), 103.7 (CH), 101.2 (CH), 96.4 (CH2), 96.0
(CH2), 61.8 (CH2), 56.9 (CH3), 56.8 (CH3), 50.5 (CH), 34.0
(CH2), 27.2 (CH2), 14.5 (CH3), 1 × CH2 unobserved. ESI-
MS: m/z (%) = 475/477 (36/100) [M + Na].
Synlett 2009, No. 10, 1567–1570 © Thieme Stuttgart · New York