10.1002/cctc.202000914
ChemCatChem
COMMUNICATION
Sterically hindered 1- and 2-naphthaldehydes (1d and 1e,
respectively) also reacted well to give good enantioselectivities
(84% ee and 83% ee, respectively), whereas the
enantioselectivity was lower in the reaction of cinnamaldehyde
(1f), a conjugated aldol acceptor. Various aldol donors were next
investigated in reactions with 1a. -Diethylated acetaldehyde
2b gave product 5ab with the highest enantioselectivity (91% ee).
Cyclic aliphatic aldehydes 2c and 2d gave the corresponding
products 5ac and 5ad in 76% ee and 74% ee, respectively.
The authors declare no conflicts of interest.
Keywords: Aldol reaction • Enantioselectivity • Hypervalent
silicon • Lewis base • Phosphine oxide
[1]
[2]
Review for Lewis base catalysis, see: (a) S. E. Denmark, G. L. Beutner,
Angew. Chem., Int. Ed. 2008, 47, 1560–1638. (b) S. Rossi, M. Benaglia,
A. Genoni, Tetrahedron 2014, 70, 2065–2080.
Review for phosphine oxide catalysis, see: (a) M. Benaglia, S. Rossi, Org.
Biomol. Chem. 2010, 8, 3824–3830. (b) T. Ayad, A. Gernet, J.-L. Pirat,
D. Virieux, Tetrahedron 2019, 75, 4385–4418. (c) S. Kotani, M. Nakajima,
Tetrahedron Lett. 2020, 61, 151421.
[3]
[4]
Review for hypervalent silicon complex, see: (a) Y. Orito,Y. M. Nakajima,
Synthesis 2006, 1391–1401. (b) M. Benaglia, S. Guizzetti, L. Pignataro,
Coord. Chem. Rev. 2008, 252, 492–512.
For examples of phosphine oxide-catalyzed asymmetric aldol reactions
repored in this laboratory, see: (a) S. Kotani, S. Hashimoto, M. Nakajima,
Tetrahedron 2007, 63, 3122–3132. (b) S. Kotani, Y. Shimoda, M. Sugiura,
M. Nakajima, Tetrahedron Lett. 2009, 50, 4602–4605. (c) S. Kotani, S.
Aoki, M. Sugiura, M. Nakajima, Tetrahedron Lett. 2011, 52, 2834–2836.
(d) S. Aoki, S. Kotani, M. Sugiura, M. Nakajima, Chem. Commun. 2012,
48, 5524–5526. (e) S. Kotani, M. Sugiura, M. Nakajima, Chem. Rec.
2013, 13, 362–370. (f) S. Aoki, S. Kotani, M. Sugiura, M. Nakajima,
Chem. Commun. 2012, 48, 5524–5526. (g) S. Kotani, Y. Yoshiwara, M.
Ogasawara, M. Sugiura, M. Nakajima, Angew. Chem., Int. Ed., 2018, 57,
15877–15881.
[5]
For other examples of phosphine oxide-catalyzed asymmetric aldol
reactions, see: (a) S. Rossi, M. Benaglia, A. Genoni, T. Benincori, G.
Celentano, Tetrahedron 2011, 67, 158–166. (b) S. Rossi, M. Benaglia, F.
Cozzi, A. Genoni, T. Benincori, Adv. Synth. Catal. 2011, 353, 848–854.
(c) M. Bonsignore, M. Benaglia, F. Cozzi, A. Genoni, S. Rossi, L.
Raimondi, Tetrahedron 2012, 68, 8251–8255. (d) J. Chen, D. Liu, D. Fan,
Y. Liu, W. Zhang, Tetrahedron 2013, 69, 8161–8168. (e) S. Cauteruccio,
D. Dova, M. Benaglia, A. Genoni, M. Orlandi, E. Licandro, Eur. J. Org.
Chem. 2014, 2694–2702. (f) S. Rossi, M. Benaglia, E. Massolo, L.
Raimondi, Catal. Sci. Technol. 2014, 4, 2708–2723. (g) S. Rossi, R.
Annunziata, F. Cozzi, L. M. Raimondi, Synthesis 2015, 47, 2113–2124.
S. E. Denmark, S. M. Pham, J. Org. Chem. 2003, 68, 5045–5055.
[6]
[7]
(a) A. B. Northrup, D. W. C. MacMillan, J. Am. Chem. Soc. 2002, 124,
6798-6799. (b) I. K. Mangion, A. B. Northrup, D.W. C. MacMillan, Angew.
Chem., Int. Ed. 2004, 43, 6722–6724.
[8]
[9]
N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka, C. F.
Barbas III, J. Am. Chem. Soc. 2006, 128, 734–735.
[a]All reactions were carried out by adding Cl3SiH (1.5 equiv) to a solution of aldol
acceptor 1x (0.5 mmol), aldol donor 2y (1.5 equiv), iBu3N (5.0 equiv), and (S)-3
(10 mol %) in CH2Cl2 (5 mL) at –20 °C.
Y. Hayashi, S. Aratake, T. Okano, J. Takahashi, T. Sumiya, M. Shoji,
Angew. Chem., Int. Ed. 2006, 45, 5527–5529.
Scheme 3. Enantioselective cross-aldol reactions of various aldehydes.[a]
[10] (a) T. Kano, Y. Yamaguchi, Y. Tanaka, K. Maruoka, Angew. Chem., Int.
Ed. 2007, 46, 1738–1740. (b) T. Kano, H. Sugimoto, K. Maruoka, J. Am.
Chem. Soc. 2011, 133, 18130–18133.
[11] (a) M. Markert, U. Scheffler, R. Mahrwald, J. Am. Chem. Soc. 2009, 131,
16642-16643. (b) U. Scheffler, R. Mahrwald, J. Org. Chem. 2012, 77,
2310-2330. (c) K. Rohr, R. Mahrwald, Org. Lett. 2012, 14, 2180-2183.
(d) U. Scheffler, R. Mahrwald, Synlett 2011, 1660–1667.
In summary, we demonstrated the utility of trichlorosilane as a
Lewis acid mediator in phosphine-oxide-catalyzed aldol reactions,
realizing highly enantioselective cross-aldol reactions between
aldehydes. The key to this achievement is the use of
triisobutylamine as an effective Brønsted base to afford the aldol
products in good-to-high yields and enantioselectivities. In future
work, we hope to develop an enantioselective tandem reaction
that exploits the diverse functionalities of trichlorosilane.
[12] Reduction of imines with trichlorosilane, see: (a) F. Iwasaki, O. Onomura,
K. Mishima, T. Maki, Y. Matsumura, Tetrahedron Lett. 1999, 40, 7507–
7511. (b) F. Iwasaki, O. Onomura, K. Mishima, T. Kanematsu, T. Maki,
Y. Matsumura, Tetrahedron Lett. 2001, 42, 2525–2527. (c) A. V. Malkov,
A. Mariani, K. N. MacDougall, P. Kocovsky, Org. Lett. 2004, 6, 2253–
2256. (d) A. V. Malkov, S. Stoncius, K. N. MacDougall, A. Mariani, G. D.
McGeoch, P. Kocovsky, Tetrahedron 2006, 62, 264–284. (e) Y.
Matsumura, K. Ogura, Y. Kouchi, F. Iwasaki, O. Onomura, Org. Lett.
2006, 8, 3789–3792. (f) O. Onomura, Y. Kouchi, F. Iwasaki, Y.
Matsumura, Tetrahedron Lett. 2006, 47, 3751–3754. (g) D. Pei, Z. Wang,
S. Wei, Y. Zhang, J. Sun, Org. Lett. 2006, 8, 5913–5915. (h) A. V. Malkov,
M. Figlus, S. Stoncius, P. Kocovsky, J. Org. Chem. 2007, 72, 1315–1325.
(i) L. Zhou, Z. Wang, S. Wei, J. Sun, Chem. Commun. 2007, 2977–2979.
(j) S. Guizzetti, M. Benaglia, F. Cozzi, S. Rossi, G. Celentano, Chirality
2008, 21, 233–238. (k) A. V. Malkov, M. Figlus, P. Kocovsky, J. Org.
Chem. 2008, 73, 3985–3995. (l) P. Wu, Z. Wang, M. Cheng, L. Zhou, J.
Sun, Tetrahedron 2008, 64, 11304–11312. (m) S. Guizzetti, M. Benaglia,
G. Celentano, Eur. J. Org. Chem. 2009, 3683–3687. (n) S. Guizzetti, M.
Acknowledgements
This work was partially supported by the Naito Foundation, JSPS
KAKENHI (No. 19K06997) from The Ministry of Education,
Culture, Sports, Science, and Technology, Japan.
Conflict of Interest
3
This article is protected by copyright. All rights reserved.