pubs.acs.org/joc
Hence, the synthesis of spiranes incorporating two privileged
Sequential Five-Component Synthesis of
Spiropyrrolidinochromanones
heterocycles could be a valuable strategy to discover new
bioactive compounds in the context of chemical genomics.
Benzopyrans and pyrrolidinones have been recognized as
two prominent types of privileged structures, which have
shown to interact with a variety of biological receptors. The
benzopyrane ring system is central to important classes of
bioactive natural products as coumarins, chromones, and
flavonoids. Some of them contain spiro-fused structures,
such as cytotoxic rotenoid amorphispironone,5 antimalarial
robustadials,6 and antileishmanial euglobals7 from Eucaly-
ptus, and the biflavonoids daphnodorins and genkwanol,
isolated from Daphne species.8 Synthetic spirobenzopyranes,
such as sorbinil9 and SNK-860,10 have been shown to be
potent aldose reductase inhibitors and, hence, potentially
useful to prevent long-term diabetic complications. On the
other hand, the spiropyrrolidine motif is common to most
oxindole alkaloids, many of which show singular biological
activities. Antitumor agents vinblastine and vincristine11 and
cell cycle regulating spirotryprostatins are representative
examples.12 Other spiropyrrolidines with relevant biological
activities include nicotinic receptor blockers,13 matrix metallo-
protease inhibitors,14 and frog and millipede poisons.15
Moreover, spiropyrrolidinochromanones have been al-
ready recognized as biologically relevant synthetic targets.
However, their synthesis is limited to the 1,3-dipolar cy-
cloaddition reaction of azomethine ylides with 3-methylene-
chroman-4-ones,16 a strategy that allows a limited variety of
Stefano Marcaccini,*,† Ana G. Neo,‡ and
Carlos F. Marcos*,‡
†
ꢀ
Dipartimento di Chimica Organica “Ugo Schiff”, Universita
di Firenze, 50019 Sesto Fiorentino FI, Italy, and ‡Laboratorio
´
´
ꢁ
ꢁ
de Quımica Organica y Bioorganica, LOBO, Departamento
de Quımica Organica e Inorganica, Facultad de Veterinaria,
ꢁ
ꢁ
ꢁ
Universidad de Extremadura, 10071 Caceres, Spain
stefano.marcaccini@unifi.it; cfernan@unex.es
Received May 12, 2009
Herein we report a novel, diastereoselective, one-pot,
two-step, sequential synthesis of highly functionalized
natural product-like spiropyrrolidinochromanones. The
process consists of an Ugi four-component condensation
of 3-formylchromones with amines, isocyanides, and
glyoxylic acids followed by a nucleophilic conjugate
addition and intramolecular cyclization. The experimen-
tal simplicity and tolerance to a wide variety of substitu-
ents makes this method suitable for combinatorial
synthesis.
(5) Li, L. P.; Wang, H. K.; Chang, J. J.; Mcphail, A. T.; Mcphail, D. R.;
Terada, H.; Konoshima, T.; Kokumai, M.; Kozuka, M.; Estes, J. R.; Lee,
K. H. J. Nat. Prod. 1993, 56, 690–698.
(6) (a) Xu, R.; Snyder, J. K.; Nakanishi, K. J. Am. Chem. Soc. 1984, 106,
734–736. (b) Cheng, Q.; Snyder, J. K. J. Org. Chem. 1988, 53, 4562–4567.
(7) (a) Bharate, S. B.; Bhutani, K. K.; Khan, S. I.; Tekwani, B. L.; Jacob,
M. R.; Khan, I. A.; Singh, I. P. Bioorg. Med. Chem. 2006, 14, 1750–1760.
(b) Singh, I. P.; Bharate, S. B. Nat. Prod. Rep. 2006, 23, 558–591.
(8) (a) Baba, K.; Taniguchi, M.; Kozawa, M. Phytochemistry 1992, 31,
975–980. (b) Baba, K.; Taniguchi, M.; Kozawa, M. Phytochemistry 1993, 33,
913–916. (c) Taniguchi, M.; Fujiwara, A.; Baba, K.; Wang, N. H. Phyto-
chemistry 1998, 49, 863–867.
(9) Sarges, R.; Bordner, J.; Dominy, B. W.; Peterson, M. J.; Whipple,
E. B. J. Med. Chem. 1985, 28, 1716–1720.
(10) Unno, R.; Yamaguchi, T.; Usui, T.; Kakigami, T.; Fukushima, M.;
Mizuno, K.; Baba, Y.; Kurono, M. Chem. Pharm. Bull. 1994, 42, 1474–1478.
(11) Ishikawa, H.; Colby, D. A.; Seto, S.; Va, P.; Tam, A.; Kakei, H.;
Rayl, T. J.; Hwang, I.; Boger, D. L. J. Am. Chem. Soc. 2009, 131, 4904–4916.
(12) Cui, C. B.; Kakeya, H.; Osada, H. Tetrahedron 1996, 52, 12651–
12666.
Spiroheterocyclic structures are common scaffolds of many
bioactive natural products, including oxindole alkaloids,1
shellfish toxins,2 and bioactive marine macrolides.3 All these
molecules incorporate at least two spiro-fused biologically
privileged heterocyclic rings4 disposed in a rigid geometry
defined by the spiro motif. This three-dimensional arrange-
ment is crucial in the interaction with biological receptors.
(13) Badio, B.; Shi, D.; Shin, Y.; Hutchinson, K. D.; Padgett, W. L.; Daly,
J. W. Biochem. Pharmacol. 1996, 52, 933–939.
(14) Freeman-Cook, K. D.; Reiter, L. A.; Noe, M. C.; Antipas, A. S.;
Danley, D. E.; Datta, K.; Downs, J. T.; Eisenbeis, S.; Eskra, J. D.; Garmene,
D. J.; Greer, E. M.; Griffiths, R. J.; Guzman, R.; Hardink, J. R.; Janat, F.;
Jones, C. S.; Martinelli, G. J.; Mitchell, P. G.; Laird, E. R.; Liras, J. L.;
Lopresti-Morrow, L. L.; Pandit, J.; Reilly, U. D.; Robertson, D.; Vaughn-
Bowser, M. L.; Wolf-Gouviea, L. A.; Yocum, S. A. Bioorg. Med. Chem. Lett.
2007, 17, 6529–6534.
(1) (a) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209–2219.
(b) Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748–8758.
(2) O’Connor, P. D.; Brimble, M. A. Nat. Prod. Rep. 2007, 24, 869–885.
(3) (a) Yeung, K. S.; Paterson, I. Chem. Rev. 2005, 105, 4237–4313.
(b) Norcross, R. D.; Paterson, I. Chem. Rev. 1995, 95, 2041–2114.
(4) The term privileged structure was first coined by Evans et al. in 1988
and was defined as “a single molecular framework able to provide ligands for
diverse receptors”. (a) Evans, B. E.; Rittle, K. E.; Bock, M. G.; DiPardo,
R. M.; Freidinger, R. M.; Whitter, W. L.; Lundell, G. F.; Veber, D. F.;
Anderson, P. S.; Chang, R. S. L.; Lotti, V. J.; Cerino, D. J.; Chen, T. B.;
Kling, P. J.; Kunkel, K. A.; Springer, J. P.; Hirshfield, J. J. Med. Chem. 1988,
31, 2235–2246. (b) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev.
2003, 103, 893–930.
(15) Daly, J. W.; Garraffo, H. M.; Jain, P.; Spande, T. F.; Snelling, R. R.;
Jaramillo, C.; Rand, A. S. J. Chem. Ecol. 2000, 26, 73–85.
(16) (a) Grigg, R.; Liu, A.; Shaw, D.; Suganthan, S.; Washington, M. L.;
Woodall, D. E.; Yoganathan, G. Tetrahedron Lett. 2000, 41, 7129–7133.
(b) Subramaniyan, G.; Raghunathan, R. Tetrahedron 2001, 57, 2909–2913.
(c) Subramaniyan, G.; Raghunathan, R.; Castro, A. M. M. Synthesis 2002,
2440–2444. (d) Manian, R. D. R. S.; Jayashankaran, J.; Kumar, S. S.;
Raghunathan, R. Tetrahedron Lett. 2006, 47, 829–832. (e) Panja, S. K.;
Karmakar, P.; Chakraborty, J.; Ghosh, T.; Bandyopadhyay, C. Tetrahedron
Lett. 2008, 49, 4397–4401.
6888 J. Org. Chem. 2009, 74, 6888–6890
Published on Web 07/27/2009
DOI: 10.1021/jo900992w
r
2009 American Chemical Society