X. Companyó et al. / Tetrahedron Letters 50 (2009) 5021–5024
5023
EtO2C
Ph
CO2Et
CHO
catalyst III
CHO
EtO2C
CO2Et
+
Ph
ref 6
HO
OH
4
1a
5a
p-TsOH, toluene
F
CO2Et
EtO2C
Ph
CO2Et
7a
EtO2C
Ph
NaH, THF
Select Fluor
HO
OH
F
O
EtO2C
Ph
CO2Et
p-TsOH, toluene
O
CHO
6a
O
O
3a
Scheme 2. Determination of absolute configuration.
product in 78% yield and 96% ee (entry 7). On the other hand, when
the b-naphthyl derivative 3d was used the yield of the reaction
dropped dramatically probably due to steric interactions (entry 4).
The absolute configuration of adducts was ascertained by
chemical correlation (Scheme 2). Following the procedure devel-
oped by Jørgensen and co-workers,16 we prepared the highly
enantiopure compound 5a, with an (R) absolute configuration.
After protection of the aldehyde in acetal form and fluorination
by of the malonate moiety by treatment with sequential sodium
hydride and SelectfluorÒ we obtained compound 7a that exhib-
Acknowledgments
We thank the Spanish Ministry of Science and Innovation for
financial support (Project AYA2006-15648-C02-01) and the Minis-
try of Education of the Czech Republic for financial support, Grant
No. MSM0021620857.
References and notes
1. (a) O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319; (b) Prakash, G. K. S.; Hu, J.
Acc. Chem. Res. 2007, 40, 921–930.
ited essentially the same optical rotation (½a D25
ꢁ
+8.1 (c 1.0, CHCl3)
when compared to the cyclic acetal derived from 3a (½a D25
ꢁ
+7.3 (c
2. (a) Miller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881–1888; (b) Purser,
S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320–330;
(c) Isanbor, C.; O’Hagan, D. J. Fluorine Chem. 2006, 127, 303–319; (d) Begué, J.-P.;
Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992–1012; (e) Kirk, J. J. Fluorine
Chem. 2006, 127, 1012–1029; (f) Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.;
Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637.
3. For excellent reviews on the synthesis of fluorine-containing compounds, see:
Brunet, V. A.; O’Hagan, D. Angew. Chem., Int. Ed. 2008, 47, 1179–1182.
4. (a) Ni, C.; Zhang, L.; Hu, J. J. Org. Chem. 2008, 73, 5699–5713; (b) Prakash, G. K.
S.; Zhao, X.; Chacko, S.; Wang, F.; Vaghoo, H.; Olah, G. A. Beilstein J. Org. Chem.
2008, 4, 17; (c) Prakash, G. K. S.; Chacko, S.; Alconcel, S.; Stewart, T.; Mathew,
T.; Olah, G. A. Angew. Chem., Int. Ed. 2007, 46, 4933–4936.
1.2, CHCl3). This indicates that the absolute configuration of this
compound is also (S).
This stereochemical outcome is in accordance with the mecha-
nism described for other organocatalytic Michael additions cata-
lyzed by diphenylprolinol derivatives reported in the literature.17
Thus, efficient shielding of the si-face of the chiral iminium inter-
mediate 4 by the bulky aryl groups of chiral pyrrolidine III leads
to stereoselective re-facial nucleophilic conjugate addition by 2-
fluoromalonate, as shown in Scheme 3.
5. Fukuzumi, T.; Shibata, N.; Sugiura, M.; Yasui, H.; Nakamura, S.; Toru, T. Angew.
Chem., Int. Ed. 2006, 45, 4973–4977.
6. (a) Furukawa, T.; Shibata, N.; Mizuta, S.; Nakamura, S.; Toru, T.; Shiro, M.
Angew. Chem., Int. Ed. 2008, 47, 8051–8054; During the preparation of this
In summary, we have reported a highly enantioselective 2-flu-
oromalonate addition to aromatic
a
,b-unsaturated aldehydes.18
The reaction is efficiently catalyzed by commercially available chi-
ral pyrrolidine derivatives and gives the corresponding adducts
with moderate to good yields and with excellent enantioselectivi-
ties. Mechanistic studies and synthetic applications of this new
methodology, as well as the discovery of new reactions based on
this concept are currently ongoing in our laboratories.
manuscript, Prakash et al. described an stereoselective 1,4-addition of
a-
fluoro- -nitro(phenylsulfonyl)methane to chalcones, using cinchona-based
a
bifunctional catalysts: (b) Prakash, G. K. S.; Wang, F.; Stewart, T.; Matthew,
7. Hamashima, Y.; Suzuki, T.; Takano, H.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127,
10164–10165.
8. Marigo, M.; Fielenbach, D.; Braunton, A.; Kjaesgaard, A.; Jørgensen, K. A. Angew.
Chem., Int. Ed. 2005, 44, 3703–3706.
9. Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 8826–8828.
10. Steiner, D. D.; Mase, N.; Barbas, C. F., III Angew. Chem., Int. Ed. 2005, 44, 3706–
3710.
11. (a) Alba, A.-N.; Companyó, X.; Moyano, A.; Rios, R. Chem. Eur. J. 2009.
organocatalytic conjugate additions see: (b) Almansi, D.; Alonso, D.; Nájera, C.
Tetrahedron: Asymmetry 2007, 18, 299–365.
12. (a) Valero, G.; Balaguer, A.-N.; Moyano, A.; Rios, R. Tetrahedron Lett. 2008, 49,
6559–6562; (b) Balaguer, A.-N.; Companyó, X.; Calvet, T.; Font-Bardía, M.;
Moyano, A.; Rios, R. Eur. J. Org. Chem. 2009, 199–203; (c) Valero, G.; Schimer, J.;
Cisarova, I.; Vesely, J.; Moyano, A.; Rios, R. Tetrahedron Lett. 2009, 50, 1943–
1946.
13. Nichols, P. J.; DeMattei, J. A.; Barnett, B. R.; LeFur, N. A.; Chuang, T.; Piscopio, A.
D.; Koch, K. Org. Lett. 2006, 8, 1495–1498.
14. Kim, D. Y.; Kim, S. M.; Koh, K. O.; Mang, J. Y.; Lee, K. Bull. Korean Chem. Soc.
2003, 24, 1425–1426.
H.; Zhang, S.; Yu, C.; Song, X.; Wang, W. Chem. Commun. 2009. doi:10.1039/
b900777f; For 2-fluoromalonate addition to nitrostyrenes see: (c) Li, H.; Zu, L.;
16. Brandau, S.; Landa, A.; Franzén, J.; Marigo, M.; Jørgensen, K. A. Angew. Chem.,
Int. Ed. 2006, 45, 4305–4309.
EtO2C
CO2Et
Ph
Ph
OTMS
OH-
R
N+
2
F
O
8
1
H2O
R
Ph
Ph
OTMS
Ph
N
Ph
OTMS
N
H
III
R
EtO2C
CO2Et
9
F
17. (a) Ibrahem, I.; Córdova, A. Angew. Chem, Int. Ed. 2006, 45, 1952–1956; (b)
Vesely, J.; Rios, R.; Ibrahem, I.; Zhao, G. -L.; Eriksson, L.; Córdova, A. Chem Eur. J.
2008, 14, 2693–2698; (c) Zhao, G. -L.; Córdova, A. Tetrahedron Lett. 2006, 47,
7417–7421; (d) Halland, N.; Aburel, P. S.; Jørgensen, K. A. Angew. Chem., Int. Ed.
2004, 43, 1272–1277; (e) Marigo, M.; Schulte, T.; Franzén, J.; Jørgensen, K. A. J.
Am. Chem. Soc. 2005, 127, 15710–15711; (f) Yamamoto, Y.; Momiyama, N.;
Yamamoto, H. J. Am. Chem. Soc. 2004, 126, 5962–5963; (g) Marigo, M.; Franzén,
F
EtO2C
R
CO2Et
H2O
CHO
3
Scheme 3. Proposed mechanism and stereochemical outcome.