K. Iwanami et al. / Tetrahedron 66 (2010) 1898–1901
1901
benzylacetone:aniline:TMSCN¼1.0:1.05:1.1), triphenylmethane as
an internal standard (2.5 wt %), and CH2Cl2 (for balance), was
continuously introduced into the reactor at room temperature with
a syringe pump (Harvard type 55-1111, Harvard Apparatus Inc.) at
a flow rate of 1.25 g hꢀ1. The weight hourly space velocity (WHSV)
was 12.5 hꢀ1. The liquid products were collected for 10 min every
6 h and analyzed by 1H NMR.
100
80
60
40
20
0
Acknowledgements
This research was financially supported by the Project of ‘De-
velopment of Microspace and Nanospace Reaction Environment
Technology for Functional Materials’ of New Energy and Industrial
Technology Development Organization (NEDO), Japan.
0
6
12 18 24 30 36 42 48
Time on stream (h)
Figure 1.
a-Aminonitrile yield during a continuous flow reaction. Reaction conditions:
benzylacetone (7.4 wt %), aniline (1.05 equiv), and TMSCN (1.1 equiv) in CH2Cl2. Al-
MCM-41 (20) (100 mg, loaded in a 4 mm I.D.ꢂ30 mm Pylex glass tube), flow rate
(1.25 g hꢀ1), room temperature.
Supplementary data
Supplementary data associated with this article can be found, in
3. Experimental section
3.1. Preparation of catalysts
References and notes
Al-MCM-41 (Si/Al¼20) was prepared by a direct hydrothermal
synthesis method according to the literature21 using cetyl-
trimethylammonium bromide (CTMABr) as a template. The Si and
Al sources were colloidal silica and sodium aluminate, respectively.
The molar ratio of CTMABr:SiO2:NaAlO4:NaOH:NH3:H2O was
1.1:20:1.0:5.5:1.1:940. The gel mixture was initially stirred for 1 h at
room temperature, and then heated to 97 ꢁC. After 1 day, the
mixture was cooled to room temperature and the pH of the reaction
mixture was adjusted to 10.2 by adding 30 wt % acetic acid. The
heating and pH adjustment procedures were repeated twice. The
resulting solid was filtered, washed with deionized water, dried at
97 ꢁC, and then calcined in air at 550 ꢁC for 18 h. The BET surface
area and the pore volume were 993 m2 gꢀ1 and 1.08 cm3 gꢀ1, re-
spectively. The preparation and characterization of Al-MCM-41 (Si/
Al¼50 and 100), MCM-41, amorphous SiO2–Al2O3, H-Y, and H-ZSM-
5 are shown in the Supplementary data.
1. (a) Shafran, Y. M.; Bakulev, V. A.; Mokrushin, V. S. Russ. Chem. Rev. 1989, 58, 148;
(b) Enders, D.; Shilvock, J. P. Chem. Soc. Rev. 2000, 29, 359.
2. (a) Kobayashi, S.; Ishitani, H.; Ueno, M. Synlett 1997, 115; (b) De, S. K.; Gibbs, R.
A. Synth. Commun. 2005, 35, 951; (c) Paraskar, S.; Sudalai, A. Tetrahedron Lett.
2006, 47, 5759; (d) Heydari, A.; Fatemi, P.; Alizadesh, A.-A. Tetrahedron Lett.
1998, 39, 3049; (e) De, S. K.; Gibbs, R. A. Tetrahedron Lett. 2004, 45, 7407; (f) De,
S. K. J. Mol. Catal. A: Chem. 2005, 225, 169; (g) De, S. K. Synth. Commun. 2005, 35,
653; (h) Pasha, M. A.; Nanjundaswamy, H. M.; Jayashankara, V. P. Synth.
Commun. 2007, 37, 4371; (i) Shen, Z.-L.; Ji, S.-J.; Loh, T.-P. Tetrahedron 2008, 64,
8159; (j) Majhi, A.; Kim, S. S.; Kadam, S. T. Tetrahedron 2008, 64, 5509; (k)
Narasimhulu, M.; Reddy, T. S.; Mahesh, K. C.; Reddy, S. M.; Reddy, A. V.;
Venkateswarlu, Y. J. Mol. Catal. A: Chem. 2007, 264, 288; (l) Royer, L.; De, S. K.;
Gibbs, R. A. Tetrahedron Lett. 2005, 46, 4595; (m) Das, B.; Ramu, R.; Ravikanth,
B.; Reddy, K. R. Synthesis 2006, 1419.
3. (a) Kobayashi, S.; Nagayama, S.; Busujima, T. Tetrahedron Lett. 1996, 37, 9221; (b)
Yadav, J. S.; Reddy, B. V. S.; Eeshwaraiah, B.; Srinivas, M. Tetrahedron 2004, 60,
1767; (c) Chen, W.-Y.; Lu, J. Synlett 2005, 2293; (d) Oskooie, H.; Heravi, M. M.;
Sadnia, A.; Jannati, F.; Behbahani, F. K. Monatsh. Chem. 2008, 139, 27; (e)
Oskooie, H. A.; Heravi, M. M.; Bakhtiari, K.; Zadsirjan, V.; Bamoharram, F. F.
Synlett 2006, 1768; (f) Rafiee, E.; Rashidzadeh, S.; Azad, A. J. Mol. Catal. A: Chem.
2007, 261, 49; (g) Rafiee, E.; Rashidzadeh, S.; Joshaghani, R.; Chalabeh, H.; Afza,
K. Synth. Commun. 2008, 38, 2741; (h) Heydari, A.; Khaksar, S.; Pourayoubi, M.;
Mahjoub, A. R. Tetrahedron Lett. 2007, 48, 4059; (i) Li, Z.; Sun, Y.; Ren, X.; Wei, P.;
Shi, Y.; Ouyang, P. Synlett 2007, 803; (j) Olah, G. A.; Mathew, T.; Panja, C.; Smith,
K.; Prakash, G. K. S. Catal. Lett. 2007, 114, 1.
3.2. General procedure of three-component Strecker-type
reactions
4. (a) Yadav, J. S.; Reddy, B. V. S.; Eshwaraiah, B.; Srinivas, M.; Vishnumurthy, P.
New J. Chem. 2003, 27, 462; (b) Martı´nez, R.; Ramo´n, D. J.; Yus, M. Tetrahedron
Lett. 2005, 46, 8471.
5. Matsumoto, K.; Kim, J. C.; Hayashi, N.; Jenner, G. Tetrahedron Lett. 2002, 43, 9167.
6. Prakash, G. K. S.; Mathew, T.; Panja, C.; Alconcel, S.; Vaghoo, H.; Do, C.; Olah, G.
A. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 3703.
Dichloromethane was distilled from calcium hydride. TMSCN
was purchased from Tokyo Chemical Industry Co., Ltd. and distilled
prior to use. Benzaldehyde, cyclohexanone, and aniline were used
after distillation and the other reagents were used as received.
7. Prakash, G. K. S.; Panja, C.; Do, C.; Mathew, T.; Olah, G. A. Synlett 2007, 2395.
8. Khan, N. H.; Agrawal, S.; Kureshy, R. I.; Abdi, S. H. R.; Singh, S.; Suresh, E.; Jasra,
R. V. Tetrahedron Lett. 2008, 49, 640.
9. (a) Corma, A. Chem. Rev. 1997, 97, 2373; (b) On, D. T.; Desplantier-Giscard, D.;
Danumah, C.; Kaliaguine, S. Appl. Catal., A 2003, 253, 545; (c) Taguchi, A.;
Schu¨th, F. Microporous Mesoporous Mater. 2005, 77, 1.
3.2.1. The reaction procedure in entry 1 in Table 2. To a suspension
of Al-MCM-41 (20) (50 mg), which was pretreated in vacuo at
120 ꢁC for 1 h, benzylacetone (148 mg, 1.0 mmol), and aniline
(110 mL, 1.2 mmol) in CH2Cl2 (2 mL) was added TMSCN (160 mL,
10. Corma, A.; Kumar, D. Stud. Surf. Sci. Catal. 1998, 117, 201.
1.2 mmol). The reaction mixture was stirred at room temperature
under an argon atmosphere. After 24 h, the catalyst was removed
via filtration and the solvent was evaporated in vacuo. 1H NMR
analysis (400 MHz) of the product using 1,1,2,2-tetrachloroethane
as an internal standard showed that 2-methyl-2-phenylamino-4-
phenylbutanenitrile was obtained in 97% yield. The product was
isolated by GPC (238 mg, 95%) and gave satisfactory 1H NMR, 13C
11. (a) Jermy, B. R.; Pandurangan, A. J. Mol. Catal., A 2006, 256, 184; (b) Robinson, M.
W. C.; Graham, A. E. Tetrahedron Lett. 2007, 48, 4727.
12. Ajaikumar, S.; Pandurangan, A. J. Mol. Catal., A 2007, 266, 1.
13. Murata, H.; Ishitani, H.; Iwamoto, M. Tetreahedron Lett. 2008, 49, 4788.
14. Iwanami, K.; Choi, J.-C.; Lu, B.; Sakakura, T.; Yasuda, H. Chem. Commun. 2008,1002.
15. Ito, S.; Yamaguchi, H.; Kubota, Y.; Asami, M. Tetrahedron Lett. 2009, 50, 2967.
16. (a) Iwanami, K.; Sakakura, T.; Yasuda, H. Catal. Commun. 2009, 10, 1990; (b) Ito,
S.; Yamaguchi, H.; Kubota, Y.; Asami, M. Chem. Lett. 2009, 38, 700.
17. Yus et al. have reported that acetonitrile itself highly promotes the three-
component Strecker-type reaction.4b In our examination, when the reaction
starting from benzylacetone was performed in acetonitrile in the absence of the
Al-MCM-41 catalyst, the desired product was obtained in 1% yield in 24 h.
18. Forlani, L.; Marianucci, E.; Todesco, P. E. J. Chem. Res., Synop. 1984, 126.
19. Sugiura, M.; Hagio, H.; Hirabayashi, R.; Kobayashi, S. J. Am. Chem. Soc. 2001, 123,
12510.
NMR, and IR spectra. The spectral data for new
included in the Supplementary data.
a-aminonitriles are
3.2.2. The reaction procedure in Figure 1. The reactor was a Pyrex
glass tube (4 mm inner diameter and 30 mm long), which was
loaded with Al-MCM-41 (20) (100 mg) pretreated in vacuo at
120 ꢁC for 1 h. The liquid feed, which contained benzylacetone
(7.4 wt %), aniline (4.9 wt %), TMSCN (5.4 wt %) (molar ratio of
20. Gru¨n, M.; Kurganov, A. A.; Schacht, S.; Schu¨th, F.; Unger, K. K. J. Chromatogr., A
1996, 740, 1.
21. (a) Kim, J. M.; Kwak, J. H.; Jun, S.; Ryoo, R. J. Phys. Chem. 1995, 99, 16742; (b) Nur,
H.; Hamid, H.; Endud, S.; Hamdan, H.; Ramli, Z. Mater. Chem. Phys. 2006, 96, 337.