ACS Catalysis
Page 6 of 8
arenes: evidence for superior reactivity of weakly coordinated
- an experimental and theoretical study on directing group
chemoselectivity. Molecules 2015, 20, 11676-11698. (h) Kerr, W.
J.; Lindsay, D. M.; Reid, M.; Atzrodt, J.; Derdau, V.; Rojahn, P.;
Weck, R. Iridium-catalysed ortho-H/D and -H/T exchange
under basic conditions: C–H activation of unprotected
tetrazoles. Chem. Commun. 2016, 52, 6669-6672. (i) Kerr, W. J.;
Mudd, R. J.; Owens, P. K.; Reid, M.; Brown, J. A.; Campos, S.
Hydrogen isotope exchange with highly active iridium(I)
NHC/phosphine complexes: a comparative counterion study. J.
Labelled Compd. Radiopharm. 2016, 59, 601-603. (j) Kerr, W. J.;
Lindsay, D. M.; Owens, P. K.; Reid, M.; Tuttle, T.; Campos, S.
Site-selective deuteration of N-heterocycles via iridium-
catalyzed hydrogen isotope exchange. ACS Catal. 2017, 7, 7182-
7186.
(6) (a) Kerr, W. J.; Reid, M.; Tuttle, T. Iridium-catalyzed C–H
activation and deuteration of primary sulfonamides: an
experimental and computational study. ACS Catal. 2015, 5, 402-
410. (b) Kerr, W. J.; Reid, M.; Tuttle, T. Iridium-catalyzed
formyl-selective deuteration of aldehydes. Angew. Chem. Int.
Ed. 2017, 56, 7808-7812.
(7) Sulfones in medicinal chemistry: (a) Feng, M.; Tang, B.;
Liang, S. H.; Jiang, X. Sulfur containing scaffolds in drugs:
synthesis and application in medicinal chemistry. Curr. Top.
Med. Chem. 2016, 16, 1200-1216. (b) Bogolubsky, A. V.; Moroz, Y.
S.; Mykhailiuk, P. K.; Ostapchuk, E. N.; Rudnichenko, A. V.;
Dmytriv, Y. V.; Bondar, A. N.; Zaporozhets, O. A.; Pipko, S. E.;
Doroschuk, R. A.; Babichenko, L. N.; Konovets, A. I.;
Tolmachev, A. One-pot synthesis of alkyl sulfines, sulfoxides,
and sulfones. ACS Comb. Sci. 2015, 17, 348-345. (c) Scott, J. S.;
Birch, A. M.; Brocklehurst, K. J.; Broo, A.; Brown, H. S.; Butlin,
R. J.; Clarke, D. S.; Davidson, O.; Ertan, A.; Goldberg, K.;
Groombridge, S. D.; Hudson, J. A.; Laber, D.; Leach, A. G.;
MacFaul, P. A.; McKerrecher, D.; Pickup, A.; Schofield, P.;
Svesson, P. H.; Sörme, P.; Teague, J. Use of small-molecule
crystal structures to address solubility in a novel series of G
protein coupled receptor 119 agonists: optimization of a lead
and in vivo evaluation. J. Med. Chem. 2012, 55, 5361-5379.
(8) (a) Fourneau, E.; Tréfouël, J.; Nitti, F.; Bovet, D. Action
antistreptococcique des dérivés sulfurés organiues. C. R. Hebd.
Seances Acad. Sci., Ser. C. 1937, 204, 1763-1766. (b) Cutler, R. A.;
Stenger, R. J.; Suter, C. M.; New antibacterial agents. 2-
Acylamino-1-(4-hydrocarbonylsulfonylphenyl)-1,3-
palladacycles. Angew. Chem. Int. Ed. 2014, 53, 734-737. (c) Piola,
L.; Fernández-Salas, J. A.; Manzini, S.; Nolan, S. P.
Regioselective ruthenium catalyzed H-D exchange using D2O
as the deuterium source. Org. Biomol. Chem. 2014, 12, 8683-
8688. (d) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M. C–H
functionalization for hydrogen isotope exchange. Angew.
Chem. Int. Ed. 2018, 57, 3022-3047.
1
2
3
4
5
6
7
8
(3) (a) Crabtree, R. Iridium compounds in catalysis. Acc. Chem.
Res. 1979, 12, 331-337. (b) Atzrodt, J.; Derdau, V.; Fey, T.;
Zimmermann, J. The renaissance of H/D exchange. Angew.
Chem. Int. Ed. 2007, 46, 7744-7765. (c) Heys, J. R.
Organoiridium complexes for hydrogen isotope exchange
labeling. J. Labelled Compd. Radiopharm. 2007, 50, 770-778. (d)
Nilsson, G. N.; Kerr, W. J. The development and use of novel
iridium complexes as catalysts for ortho-directed hydrogen
isotope exchange reactions. J. Labelled Compd. Radiopharm.
2010, 53, 662-667. (e) Salter, R. The development of iridium(I)
phosphine systems for ortho-directed hydrogen isotope
exchange. J. Labelled Compd. Radiopharm. 2010, 53, 645-657.
(4) (a) Filer, C. N. Direct metal-catalyzed tritiation of organic
molecules. J. Labelled Compd. Radiopharm. 2010, 53, 739-744.
(b) Modutlwa, N.; Maegawa, T.; Monguchi, Y.; Sajiki, H.
Synthesis of deuterium-labelled drugs by hydrogen-deuterium
(H-D) exchange using heterogenous catalysis. J. Labelled
Compd. Radiopharm. 2010, 53, 686-692. (c) Shevchenko, V. P.;
Nagaev, I. Y.; Myasoedov, N. F. The efficiency of solvent-free
catalyst systems in the synthesis of tritium-labelled biologically
active compounds. J. Labelled Compd. Radiopharm. 2010, 53,
693-703. (d) Hesk, D.; Lavey, C. F.; McNamara, P. Tritium
labelling of pharmaceuticals by metal-catalysed exchange
methods. J. Labelled Compd. Radiopharm. 2010, 53, 722-730. (e)
Allen, P. H.; Hickey, M. J.; Kingston, L. P.; Wilkinson, D. J.
Metal-catalyzed isotopic exchange labelling: 30 years of
experience in pharmaceuticals R&D. J. Labelled Compd.
Radiopharm. 2010, 53, 731-738. (f) Lockley, W. J. S.; McEwen, A.;
Cooke, R. Tritium: a coming of age for drug discovery and
development ADME studies. J. Labelled Compd. Radiopharm.
2012, 55, 235-257. (g) Elmore, C. S.; Bragg, R. A. Isotope
chemistry: a useful tool in the drug discovery arsenal. Bioorg.
Med. Chem. Lett. 2015, 25, 167-171.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(5) (a) Brown, J. A.; Irvine, S.; Kennedy, A. R.; Kerr, W. J.;
Andersson, S.; Nilsson, G. N. Highly active iridium(I)
complexes for catalytic hydrogen isotope exchange. Chem.
Commun. 2008, 1115-1117. (b) Cochrane, A. R.; Idziak, C.; Kerr,
W. J.; Mondal, B.; Paterson, L. C.; Tuttle, T.; Andersson, S.;
Nilsson, G. N. Practically convenient and industrially-aligned
methods for iridium-catalysed hydrogen isotope exchange
processes. Org. Biomol. Chem. 2014, 12, 3598-3603. (c) Brown, J.
A.; Cochrane, A. R.; Irvine, S.; Kerr, W. J.; Mondal, B.;
Parkinson, J. A.; Paterson, L. C.; Reid, M.; Tuttle, T.; Andersson,
S.; Nilsson, G. N. The synthesis of highly active iridium(I)
complexes and their application in catalytic hydrogen isotope
exchange. Adv. Synth. Catal. 2014, 356, 3551-3562. (d) Kennedy,
A. R.; Kerr, W. J.; Moir, R.; Reid, M. Anion effects to deliver
enhanced iridium catalysts for hydrogen isotope exchange
processes. Org. Biomol. Chem. 2014, 12, 7927-7931. (e) Kerr, W.
J.; Mudd, R. J.; Paterson, L. C.; Brown, J. A. Iridium(I)-catalyzed
regioselective C–H activation and hydrogen-isotope exchange
of non-aromatic unsaturated functionality. Chem. Eur. J. 2014,
20, 14604-14607. (f) Atzrodt, J.; Derdau, V.; Kerr, W. J.; Reid, M.;
Rojahn, P.; Weck, R. Expanded applicability of iridium(I)
NHC/phosphine catalysts in hydrogen isotope exchange
processes with pharmaceutically-relevant heterocycles.
Tetrahedron 2015, 71, 1924-1929. (g) Devlin, J.; Kerr, W. J.;
Lindsay, D. M.; McCabe, T. J. D.; Reid, M.; Tuttle, T. Iridium-
catalysed ortho-directed deuterium labelling of aromatic esters
propanediols and related compounds. J. Am. Chem. Soc. 1952,
74, 5475-5481. (c) Prasit, P.; Wang, Z.; Brideau, C.; Chan, C-C.;
Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J. F.; Ford-
Hutchinson, A. W.; Gauthier, J. Y.; Gordon, R.; Guay, J.; Gresser,
M.; Kargman, S.; Kennedy, B.; Leblanc, Y.; Leger, S.; Mancini, J.;
O’Neill, G. P.; Ouellet, M. The discovery of refecoxib, [MK 996,
VIOXX®,
4-(4’-methysulfonylphenyl)-3-phenyl-2(5H)-
furanone], an orally active cyclooxygenase-2 inhibitor. Bioorg.
Med. Chem. Lett. 1999, 9, 1773-1778. (d) M. Klaus,
Tetrahydronapthalene and indane compounds useful as anti-
tumor agents, US4396553 A1, August 2, 1983.
(9) See, for example, Chen, D.; Xing, G.; Zhou, H. Sulfone
promoted Rh(III)-catalyzed C–H activation and base assisted
1,5-H shift strategy for the construction of seven-membered
rings. Org. Chem. Front. 2015, 2, 947-950.
(10) (a) Parmentier, M.; Hartung, T.; Pfaltz, A.; Muri, D.
Iridium-catalyzed H/D exchange: Ligand complexes with
improved efficiency and scope. Chem. Eur. J. 2014, 20, 11496-
11504. (b) Jess, K.; Derdau, V.; Weck, R.; Atzrodt, J.; Freytag, M.;
Jones, P. G.; Tamm. M. Hydrogen isotope exchange iridium(I)
complexes supported by imidazolin-2-imine P,N-ligands Adv.
Synth. Catal., 2017, 359, 629-638.
(11) (a) Houk, K. N.; Cheong, P. H.-Y. Computational prediction
of small-molecules catalysts. Nature 2008, 455, 309-313. (b)
Poree, C.; Schoenebeck, F.
A holy grail in chemistry:
ACS Paragon Plus Environment