Published on Web 07/31/2009
Direct Interaction between Amphotericin B and Ergosterol in
2
Lipid Bilayers As Revealed by H NMR Spectroscopy
Nobuaki Matsumori,* Kazuaki Tahara, Hiroko Yamamoto, Atsushi Morooka,
Mototsugu Doi, Tohru Oishi, and Michio Murata*
Department of Chemistry, Graduate School of Science, Osaka UniVersity, Toyonaka,
Osaka 560-0043, Japan
Received April 25, 2009; E-mail: matsmori@chem.sci.osaka-u.ac.jp; murata@chem.sci.osaka-u.ac.jp
Abstract: Although amphotericin B (AmB) is thought to exert its antifungal activity by forming transmembrane
ion-permeable self-assemblies together with ergosterol, no previous study has directly proven AmB-ergosterol
interaction. To establish the interaction, we measured 2H NMR using deuterium-labeled sterols and AmB.
The 2H NMR spectra of deuterated ergosterol in palmitoyloleoylphosphatidylcholine (POPC) bilayers showed
that fast axial diffusion of erogosterol was almost completely inhibited by the coexistence of AmB. Conversely,
cholesterol mobility in POPC membrane was essentially unchanged with or without AmB. These results
unequivocally demonstrate that ergosterol has significant interaction with AmB in POPC bilayers. In addition,
we examined the mobility of AmB using deuterium-labeled AmB, and found that, although AmB is almost
immobilized in sterol-free and cholesterol-containing POPC membranes, a certain ratio of AmB molecules
acquires mobility in the presence of ergosterol. The similar mobility of AmB and ergosterol in POPC bilayers
confirmed the idea of the direct intermolecular interaction between ergosterol and AmB.
Amphotericin B (AmB, Chart 1) has been a standard drug
for treatment of deep-seated systemic fungal infections for nearly
50 years.1-3 For lack of better alternatives, as well as the rare
occurrence of resistant strains,4 the clinical importance of AmB
has remained unchanged. It is presently widely accepted that
AmB molecules in lipid bilayers form a barrel-stave channel,
with their polyhydroxy side pointing inward and their lipophilic
heptaene part directing outward.5,6 The occurrence of such
molecular assemblies in fungal cell membranes increases ion
permeability and alters membrane potentials, ultimately leading
to cell death.6-9 The pharmacological action of AmB is based
on its selective toxicity against fungi over mammalians, which
is thought to result from its stronger interaction to ergosterol
(Chart 1), an abundant sterol in fungal membranes, than to
cholesterol(Chart1),themajorsterolinmammalianmembranes.10,11
The interaction between AmB and sterol, particularly ergosterol,
has also been supported by a number of experimental results:
(a) higher affinity of AmB to ergosterol-containing membranes
than to sterol-free and cholesterol membranes;10,12,13 (b) more
potent ion-permeability of AmB in ergosterol-membranes;8,14-16
and (c) spectroscopic changes of AmB in sterol-containing
membranes, as seen in UV,17-19 CD,8,20-22 and IR spectra.23,24
None of these studies, however, have directly proven the
AmB-sterol interaction in membrane environments. Although
we have recently demonstrated close contacts between polyene
carbon atoms of AmB and a fluorine atom of 6-F-ergosterol
using an AmB-6-F-ergosterol covalent conjugate by a solid state
NMR technique,25 it might not be so straightforward to
(12) Readio, O. D.; Bittman, R. Biochim. Biophys. Acta 1982, 685, 219–
224.
(13) Mouri, R.; Konoki, K.; Matsumori, N.; Oishi, T.; Murata, M.
Biochemistry 2008, 47, 7807–7815.
(14) Herve, M.; Cybulska, B.; Gary-Bobo, C. M. Eur. Biophys. J. 1985,
12, 121–128.
(15) Herve, M.; Debouzy, J. C.; Borowski, E.; Cybulska, B.; Gary-Bobo,
C. M. Biochim. Biophys. Acta 1989, 980, 261–272.
(16) Brutyan, R. A.; McPhie, P. J. Gen. Physiol. 1996, 107, 69–78.
(17) Fujii, G.; Chang, J. E.; Coley, T.; Steere, B. Biochemistry 1997, 36,
4959–4968.
(1) Gallis, H. A.; Drew, R. H.; Pickard, W. W. ReV. Infect. Dis. 1990,
12, 308–329.
(18) Millie, P.; Langlet, J.; Berges, J.; Caillet, J.; Demaret, J.-P. J. Phys.
Chem. B 1999, 103, 10883–10891.
(2) Hartsel, S. C.; Bolard, J. Trends Pharmacol. Sci. 1996, 12, 445–449.
(3) Ablordeppey, S. Y.; Fan, P. C.; Ablordeppey, J. H.; Mardenborough,
L. Curr. Med. Chem. 1999, 6, 1151–1195.
(19) Gagooe, M.; Koper, R.; Gruszecki, W. I. Biochim. Biophys. Acta,
Biomembr. 2001, 1511, 90–98.
(20) Milhaud, J.; Ponsinet, V.; Takashi, M.; Michels, B. Biochim. Biophys.
Acta, Biomembr. 2002, 1558, 95–108.
(4) Vanden-Bossche, H.; Dromer, F.; Improvisi, I.; LozanoChiu, M.; Rex,
J. H.; Sanglard, D. Med. Mycol. 1998, 36, 119–128.
(5) Andreoli, T. E. Ann. N.Y. Acad. Sci. 1974, 235, 448–468.
(6) De-Kruijff, B.; Demel, R. A. Biochim. Biophys. Acta, Biomembranes
1974, 339, 57–70.
(21) Bolard, J.; Seigneuret, M.; Boudet, G. Biochim. Biophys. Acta 1980,
599, 280–293.
(22) Bolard, J.; Legrand, P.; Heitz, F.; Cybulska, B. Biochemistry 1991,
30, 5707–5715.
(7) Cohen, B. E. Biochim. Biophys. Acta 1986, 857, 117–122.
(8) Vertut-Croquin, A.; Bolard, J.; Chabbert, M.; Gary-Bobo, C. Bio-
chemistry 1983, 22, 2939–2944.
(23) Fournier, I.; Barwicz, J.; Auger, M.; Tancrede, P. Chem. Phys. Lipids
2008, 151, 41–50.
(24) Paquet, M.-J.; Fournier, I.; Barwicz, J.; Tancrede, P.; Auger, M. Chem.
Phys. Lipids 2002, 119, 1–11.
(9) Van-Hoogevest, P.; De-Kruijff, B. Biochim. Biophys. Acta 1978, 511,
397–407.
(25) Kasai, Y.; Matsumori, N.; Umegawa, Y.; Matsuoka, S.; Ueno, H.;
Ikeuchi, H.; Oishi, T.; Murata, M. Chem.-Eur. J. 2008, 14, 1178–
1185.
(10) Witzke, N. M.; Bittman, R. Biochemistry 1984, 23, 1668–1674.
(11) Baran, M.; Mazerski, J. Biophys. Chem. 2002, 95, 125–133.
9
10.1021/ja9033473 CCC: $40.75 2009 American Chemical Society
J. AM. CHEM. SOC. 2009, 131, 11855–11860 11855