In conclusion, we have developed a straightforward general
method for preparation of S-glycosylated peptoids and a high
yield method for their cyclization. The reported strategy relies
on the combination of a rapid synthesis of glycosylated
building blocks from inexpensive precursors and their direct
incorporation into a time-effective and high-yielding sub-
monomer solid-phase approach. The versatility of the method
has been demonstrated by the easy preparation of three
glycopeptoids with variable saccharide content. Due to the
therapeutic potential associated with the tuning of carbo-
hydrate-receptor interactions, the herein presented overall
strategy is expected to be a useful tool for sugar-based
drug discovery.
Acknowledgment. We acknowledge the financial support
of University of Salerno.
Supporting Information Available: Full experimental
details and characterization of all compounds are reported
as well as NMR spectra and HPLC chromathograms. This
material is available free of charge via the Internet at
(10) (a) Kim, J. M.; Roy, R. Carbohydr. Res. 1997, 298, 173–179. (b)
Hu, Y.-J.; Roy, R. Tetrahedron Lett. 1999, 40, 3305–3308.
(11) Dechantsreiter, M. A.; Burkhart, F.; Kessler, H. Tetrahedron Lett.
1998, 39, 253–254.
OL901524K
(12) (a) Norgren, A. S.; Budke, C.; Majer, Z.; Heggemann, C.; Koop,
T.; Sewald, N. Synthesis 2009, 3, 488–494. (b) Roy, O.; Faure, S.; Thery,
V.; Didierjean, C.; Taillefumier, C. Org. Lett. 2008, 10, 921–924. (c) Hu,
Y.-J.; Roy, R. Tetrahedron Lett. 1999, 40, 3305–3308.
(13) Horton, D.; Wander, J. D. In Carbohydrates: Chemistry and
Biochemistry; Pigman, W., Horton, D., Eds.; Academic Press: New York,
1990; Vol. 4B, p 799.
(20) Ozaki, K.; Lee, R. T.; Lee, Y. C.; Kawasaki, T. Glycoconjugate J.
1995, 12, 268–274.
(21) (a) Fan, E.; Zhang, Z.; Minke, W. E.; Hou, Z.; Verlinde, C. L. M. J.;
Hol, W. G. J. J. Am. Chem. Soc. 2000, 122, 2663–2664. (b) Branderhorst,
H. M.; Liskamp, R. M. J.; Visser, G. M.; Pieters, R. J. Chem. Commun.
2007, 5043–5045. (c) Ingrassia, L.; Camby, I.; Lefranc, F.; Mathieu, V.;
Nshimyumukiza, P.; Darro, F.; Kiss, R. Curr. Med. Chem. 2006, 13, 3513–
3527.
(14) (a) Zhu, X.; Pachamuthu, K.; Schmidt, R. R. J. Org. Chem. 2003,
68, 5641–5651. (b) Thayer, D. A.; Yu, H. N.; Galan, M. C.; Wong, C.-H.
Angew. Chem., Int. Ed. 2005, 44, 4596–4599. (c) For a recent update on
the synthesis of glycoproteins, see: Gamblin, D. P.; Scanlan, E. M.; Davis,
B. G. Chem. ReV. 2009, 109, 131–163.
(22) Deguise, I.; Lagnoux, D.; Roy, R. New. J. Chem. 2007, 31, 1321–
1331.
(23) Yuasa, H.; Kamata, Y.; Kurono, S.; Hashimoto, H. Bioorg. Med.
Chem. Lett. 1998, 8, 2139–2144.
(15) Kruijtzer, J. A. W.; Hofmeyer, L. J. F.; Heerma, W.; Versluis, C.;
Liskamp, R. M. J. Chem.sEur. J. 1998, 4, 1570–1580.
(16) Zuckermann, R. N.; Kerr, J. M.; Kent, S. B. H.; Moos, W. H. J. Am.
Chem. Soc. 1992, 114, 10646–10647.
(24) Yuasa, H.; Honma, H.; Hashimoto, H.; Tsunooka, M.; Kojima-
Aikawa, K. Bioorg. Med. Chem. Lett. 2007, 17, 5274–5278.
(25) (a) Pieters, R. J. Med. Res. ReV. 2007, 27, 796–816. (b) Imberty,
A.; Chabre, Y. M.; Roy, R. Chem.sEur. J. 2008, 14, 7490–7499.
(26) (a) Shin, S.; Yoo, B.; Todaro, L. J.; Kirshenbaum, K. J. Am. Chem.
Soc. 2007, 129, 3218–3225. (b) Maulucci, N.; Izzo, I.; Bifulco, G.; Aliberti,
A.; De Cola, C.; Comegna, D.; Gaeta, C.; Napolitano, A.; Pizza, C.; Tedesco,
C.; Flot, D.; De Riccardis, F. Chem. Commun. 2008, 3927–3929.
(27) No hint of the proton coalescence was observed up to 373 K (see
the Supporting Information).
(17) Valerio, S.; Iadonisi, A.; Adinolfi, M.; Ravida`, A. J. Org. Chem.
2007, 72, 6097–6106.
(18) Adinolfi, M.; Iadonisi, A.; Ravida`, A.; Schiattarella, M. Tetrahedron
Lett. 2003, 44, 7863–7866.
(19) Medgyes, A.; Farkas, E.; Lipta´k, A.; Pozsgay, V. Tetrahedron 1997,
53, 4159–4178.
Org. Lett., Vol. 11, No. 17, 2009
3901