1424 Bioconjugate Chem., Vol. 21, No. 8, 2010
Cai et al.
(2) Shokeen, M., and Anderson, C. J. (2009) Molecular imaging
of cancer with copper-64 radiopharmaceuticals and positron
emission tomography (PET). Acc. Chem. Res. 42, 832–841.
(3) Eckelman, W. C., Reba, R. C., and Kelloff, G. J. (2008)
Targeted imaging: an important biomarker for understanding
disease progression in the era of personalized medicine. Drug
DiscoVery Today 13, 748–759.
(4) Tanaka, K., and Fukase, K. (2008) PET (positron emission
tomography) imaging of biomolecules using metal-DOTA com-
plexes: a new collaborative challenge by chemists, biologists,
and physicians for future diagnostics and exploration of in vivo
dynamics. Org. Biomol. Chem. 6, 815–828.
(5) Wadas, T. J., Wong, E. H., Weisman, G. R., and Anderson,
C. J. (2007) Copper chelation chemistry and its role in copper
radiopharmaceuticals. Curr. Pharm. Des 13, 3–16.
(6) Blower, P. J., Lewis, J. S., and Zweit, J. (1996) Copper
radionuclides and radiopharmaceuticals in nuclear medicine.
Nucl. Med. Biol. 23, 957–980.
(7) Liu, S. (2008) Bifunctional coupling agents for radiolabeling
of biomolecules and target-specific delivery of metallic radio-
nuclides. AdV. Drug DeliVery ReV. 60, 1347–1370.
(8) Smith, S. V. (2004) Molecular imaging with copper-64.
J. Inorg. Biochem 98, 1874–1901.
(9) Anderson, C. J., Wadas, T. J., Wong, E. H., and Weisman,
G. R. (2008) Cross-bridged macrocyclic chelators for stable
complexation of copper radionuclides for PET imaging. Q. J.
Nucl. Med. Mol. Imaging 52, 185–192.
(10) Ferreira, C. L., Yapp, D. T., Lamsa, E., Gleave, M., Bensimon,
C., Jurek, P., and Kiefer, G. E. (2008) Evaluation of novel
bifunctional chelates for the development of Cu-64-based ra-
diopharmaceuticals. Nucl. Med. Biol. 35, 875–882.
(11) Sargeson, A. M. (1996) The potential for the cage complexes
in biology. Coord. Chem. ReV. 151, 89–114.
(12) Smith, S. V. (2008) Sarar technology for the application of
Copper-64 in biology and materials science. Q. J. Nucl. Med.
Mol. Imaging 52, 193–202.
(13) DiBartolo, N., Sargeson, A. M., Donlevy, T. M., and Smith,
S. V. (2001) Synthesis of a new cage ligand, SarAr, and its
complexation with selected transition metal ions for potential
use in radioimaging. J. Chem. Soc., Dalton Trans. , 2303–2309.
(14) DiBartolo, N., Sargeson, A. M., and Smith, S. V. (2006)
New64Cu PET imaging agents for personalised medicine and
drug development using the hexa-aza cage, SarAr. Org. Biomol.
Chem. 4, 3350–3357.
(15) Cai, H., Fissekis, J., and Conti, P. S. (2009) Synthesis of a
novel bifunctional chelator AmBaSar based on sarcophagine for
peptide conjugation and 64Cu radiolabelling. Dalton Trans. ,
5395–5400.
(16) Cai, H., Li., Z., Huang, C., Park, R., Shahinian, A., and Conti,
P. S. (2010) An improved synthesis and biological evaluation
of a new caged-like bifunctional chelator 4-((8-amino-3, 6, 10,
13, 16, 19- hexaazabicyclo [6.6.6] icosane-1-ylamino) methyl)
benzoic acid (AmBaSar) for 64Cu-radiopharmaceuticals. Nucl.
Med. Biol. 37, 57–65.
(17) Varner, J. A., and Cheresh, D. A. (1996) Tumor angiogenesis
and the role of vascular cell integrin Rνꢀ3. Important AdV. Oncol.
69–87.
(18) Wadas, T. J., Deng, H., Sprague, J. E., Zheleznyak, A.,
Weilbaecher, K. N., and Anderson, C. J. (2009) Targeting the
Rνꢀ3 integrin for small-animal PET/CT of osteolytic bone
metastases. J. Nucl. Med. 50, 1873–1880.
(19) Cai, W., and Chen, X. (2008) Multimodality molecular imaging
of tumor angiogenesis. J. Nucl. Med. 49 (2), 113S–128S.
(20) Schottelius, M., Laufer, B., Kessler, H., and Wester, H. J.
(2009) Ligands for mapping Rνꢀ3-integrin expression in vivo.
Acc. Chem. Res. 42, 969–80.
(21) Liu, S. (2006) Radiolabeled multimeric cyclic RGD peptides
as integrin Rνꢀ3 targeted radiotracers for tumor imaging. Mol.
Pharmaceutics 3, 472–487.
(22) Haubner, R., and Wester, H. J. (2004) Radiolabeled tracers
for imaging of tumor angiogenesis and evaluation of anti-
angiogenic therapies. Curr. Pharm. Des. 10, 1439–1455.
(23) Chen, X., Park, R., Tohme, M., Shahinian, A. H., Bading,
J. R., and Conti, P. S. (2004) MicroPET and autoradiographic
imaging of breast cancer Rν-integrin expression using 18F- and
64Cu-labeled RGD peptide. Bioconjugate Chem. 15, 41–49.
(24) Achilefu, S., Bloch, S., Markiewicz, M. A., Zhong, T., Ye,
Y., Dorshow, R. B., Chance, B., and Liang, K. (2005) Synergistic
effects of light-emitting probes and peptides for targeting and
monitoring integrin expression. Proc. Natl. Acad. Sci. U.S.A. 102,
7976–7981.
(25) Decristoforo, C., Hernandez Gonzalez, I., Carlsen, J., Rup-
prich, M., Huisman, M., Virgolini, I., Wester, H. J., and Haubner,
R. (2008) 68Ga- and 111In-labelled DOTA-RGD peptides for
imaging of Rνꢀ3 integrin expression. Eur. J. Nucl. Med. Mol.
Imaging 35, 1507–1515.
(26) Li, Z., Cai, W., Cao, Q., Chen, K., Wu, Z., He, L., and Chen,
X. (2007) 64Cu-labeled tetrameric and octameric RGD peptides
for small-animal PET of tumor Rνꢀ3 integrin expression. J. Nucl.
Med. 48, 1162–1171.
(27) Chen, X., Hou, Y., Tohme, M., Park, R., Khankaldyyan, V.,
Gonzales-Gomez, I., Bading, J. R., Laug, W. E., and Conti, P. S.
(2004) Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET
imaging of brain tumor alphavbeta3-integrin expression. J. Nucl.
Med. 45, 1776–1783.
(28) Juran, S., Walther, M., Stephan, H., Bergmann, R., Steinbach,
J., Kraus, W., Emmerling, F., and Comba, P. (2009) Hexadentate
bispidine derivatives as versatile bifunctional chelate agents for
copper(II) radioisotopes. Bioconjugate Chem. 20, 347–359.
(29) Shi, J., Kim, Y. S., Zhai, S., Liu, Z., Chen, X., and Liu, S.
(2009) Improving tumor uptake and pharmacokinetics of 64Cu-
labeled cyclic RGD peptide dimers with Gly3 and PEG4 linkers.
Bioconjugate Chem. 20, 750–759.
(30) De Leon-Rodriguez, L. M., and Kovacs, Z. (2008) The
synthesis and chelation chemistry of DOTA-peptide conjugates.
Bioconjugate Chem. 19, 391–402.
(31) Wang, H., Chen, K., Cai, W., Li, Z., He, L., Kashefi, A., and
Chen, X. (2008) Integrin-targeted imaging and therapy with
RGD4C-TNF fusion protein. Mol. Cancer Ther. 7, 1044–1053.
(32) Eiblmaier, M., Meyer, L. A., Watson, M. A., Fracasso, P. M.,
Pike, L. J., and Anderson, C. J. (2008) Correlating EGFR
expression with receptor-binding properties and internalization
of 64Cu-DOTA-cetuximab in 5 cervical cancer cell lines. J. Nucl.
Med. 49, 1472–1479.
(33) Jarrett, B. R., Gustafsson, B., Kukis, D. L., and Louie, A. Y.
(2008) Synthesis of 64Cu-labeled magnetic nanoparticles for
multimodal imaging. Bioconjugate Chem. 19, 1496–1504.
(34) Rossin, R., Muro, S., Welch, M. J., Muzykantov, V. R., and
Schuster, D. P. (2008) In vivo imaging of 64Cu-labeled polymer
nanoparticles targeted to the lung endothelium. J. Nucl. Med.
49, 103–111.
(35) Valko, K. (2004) Application of high-performance liquid
chromatography based measurements of lipophilicity to model
biological distribution. J. Chromatogr., A 1037, 299–310.
(36) Wei, L., Ye, Y., Wadas, T. J., Lewis, J. S., Welch, M. J.,
Achilefu, S., and Anderson, C. J. (2009) 64Cu-labeled CB-TE2A
and diamsar-conjugated RGD peptide analogs for targeting
angiogenesis: comparison of their biological activity. Nucl. Med.
Biol. 36, 277–285.
BC900537F