as difficult for several reasons. (1) Acetaldehyde is reactive
as an electrophile, causing a self-aldol reaction. (2) The
generated aldol product, an R,R-unsubstituted aldehyde, is
also reactive both as a nucleophile and as an electrophile,
promoting overreaction. (3) Dehydration is another side
reaction. In spite of these difficulties, our group first
successfully realized the asymmetric direct aldol reaction of
acetaldehyde using an organocatalyst.9
The organocatalyst-mediated reaction is one of the current
topics in synthetic organic chemistry, and several efficient
organocatalysts have been reported (Figure 2).10 Our group11
Figure 1. Natural products possessing the 3-hydroxyindole moiety
and its key intermediate.
diastereoselective vinylogous Mukaiyama aldol reaction was
employed as a key step.5 Although there are several
asymmetric syntheses of madindoline A and B,6,7 there are
only two synthetic methods for the enantioselective synthesis
of the 3a-hydroxyfuroindoline fragment of madindoline A
Figure 2. Organocatalysts examined in this study.
and Jørgensen’s group12 independently developed diaryl-
prolinol silyl ether as an effective organocatalyst.13 During
our investigation of the applications of the catalyst, we found
that trifluoromethyl-substituted diarylprolinol promotes cross-
and self-aldol reactions of acetaldehyde, affording the desired
products with excellent enantioselectivity.9 In this paper, we
describe the asymmetric direct aldol reaction of acetaldehyde
and isatin, which is applied to the short synthesis of ent-
convolutamydine E, the indole fragment of madindoline A
and B, and CPC-1.
j
and B: One is developed by Sunazuka, Omura, and co-
workers, in which Sharpless epoxidation was used as a key
step,6 while Kobayashi used vinylogous Mukaiyama aldol
reaction as a key reaction.5 Although CPC-1 was synthesized
via asymmetric allylation as a key step, its enantioselectivity
is not sufficient (42% ee).3 During the preparation of this
manuscript, Nakamura and co-workers reported the asym-
metric direct aldol reaction of acetaldehyde and isatin,
catalyzed by N-(heteroarenesulfonyl)prolinamide as an or-
ganocatalyst, which was applied to the synthesis of convo-
lutamydine B and E.8
One of the straightforward methods for the synthesis of
these natural products is to use a 3-hydroxyindole derivative
(Figure 1) as a key synthetic intermediate, which would be
generated via the asymmetric direct aldol reaction of acetal-
dehyde with isatin or its derivatives. The aldol reaction of
acetaldehyde as a nucleophile, however, has been regarded
We chose 1-benzylisatin (7a) as an electrophile, and the
aldol reaction with acetaldehyde was investigated (eq 1). The
(9) (a) Hayashi, Y.; Itoh, T.; Aratake, S.; Ishikawa, H. Angew. Chem.,
Int. Ed. 2008, 47, 2082. (b) Hayashi, Y.; Samanta, S.; Itoh, T.; Ishikawa,
H. Org. Lett. 2008, 10, 5581.
(10) Reviews on organocatalysis, see: (a) Dalko, P. I.; Moisan, L. Angew.
Chem., Int. Ed. 2004, 43, 5138. (b) Asymmetric Organocatalysis; Berkessel,
A., Groger, H., Ed.; Wiley-VCH: Weinheim, 2005. (c) Hayashi, Y. J. Synth.
Org. Chem. Jpn. 2005, 63, 464. (d) List, B. Chem. Commun. 2006, 819.
(e) Marigo, M.; Jørgensen, K. A. Chem. Commun. 2006, 2001. (f) Gaunt,
M. J.; Johansson, C. C. C.; McNally, A.; Vo, N. T. Drug DiscoVery Today
2007, 12, 8. (g) EnantioselectiVe Organocatalysis; Dalko, P. I., Ed.; Wiley-
VCH: Weinheim, 2007. (h) Mukherjee, S.; Yang, J. W.; Hoffmann, S.;
List, B. Chem. ReV. 2007, 107, 5471. (i) Dondoni, A.; Massi, A. Angew.
Chem., Int. Ed. 2008, 47, 4638. (j) Melchiorre, P.; Marigo, M.; Carlone,
A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138.
(4) (a) Luppi, G.; Cozzi, P. G.; Monari, M.; Kaptein, B.; Broxterman,
Q. B.; Tomasini, C. J. Org. Chem. 2005, 70, 7418. (b) Luppi, G.; Monari,
M.; Correˆa, R. J.; Violante, F. A.; Pinto, A. C.; Kaptein, B.; Broxterman,
A. B.; Garden, S. J.; Tomasini, C. Tetrahedron 2006, 62, 12017. (c) Malkov,
A. V.; Kabeshov, M. A.; Bella, M.; Kysilka, O.; Malyshev, D. A.;
Pluha´kova´, K.; Koovsky, P. Org. Lett. 2007, 9, 5473. (d) Chen, J.-R.; Liu,
X.-P.; Zhu, X.-Y.; Li, L.; Qiao, Y.-F.; Zhang, J.-M.; Xiao, W.-J. Tetrahedron
2007, 63, 10437. (e) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.;
Shibata, N.; Toru, T. Chem. Eur. J. 2008, 14, 8079.
(11) (a) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem.,
Int. Ed. 2005, 44, 4212. Recent report, see: (b) Hayashi, Y.; Obi, K.; Ohta,
Y.; Okamura, D.; Ishikawa, H. Chem. Asian J. 2009, 4, 246.
(5) Nakamura, T.; Shirokawa, S.; Hosokawa, S.; Nakazaki, A.; Koba-
yashi, S. Org. Lett. 2006, 8, 677.
(12) (a) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A.
Angew. Chem., Int. Ed. 2005, 44, 794. (b) Marigo, M.; Fielenbach, D.;
Braunton, A.; Kjasgaard, A.; Jørgensen, K. A. Angew. Chem., Int. Ed 2005,
44, 3703. Recent reports, see: (c) Jiang, H.; Falcicchio, A.; Jensen, K. L.;
Paixao, M. W.; Bertelsen, S.; Jørgensen, K. A. J. Am. Chem. Soc. 2009,
131, 7153.
(6) (a) Sunazuka, T.; Hirose, T.; Shirahata, T.; Harigaya, Y.; Hayashi,
j
M.; Komiyama, K.; Omura, S.; Smith III, A. B. J. Am. Chem. Soc. 2000,
122, 2122. (b) Hirose, T.; Sunazuka, T.; Shirahata, T.; Yamamoto, D.;
j
Harigaya, Y.; Kuwajima, I.; Omura, S. Org. Lett. 2002, 4, 501. (c) Hirose,
T.; Sunazuka, T.; Yamamoto, D.; Kojima, N.; Shirahata, T.; Harigaya, Y.;
j
Kuwajima, I.; Omura, S. Tetrahedron 2005, 61, 6015
.
(13) Selected examples of other group’s application of diarylprolinol
ether, see: (a) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature
2006, 441, 861. (b) Vesely, J.; Ibrahem, I.; Zhao, G.-L.; Rios, R.; Cordova,
A. Angew. Chem., Int. Ed. 2007, 46, 778. (c) Xie, H.; Zu, L.; Li, H.; Wang,
J.; Wang, W. J. Am. Chem. Soc. 2007, 129, 10886. (d) Enders, D.; Narine,
A. A.; Benninghaus, T. R.; Raabe, G. Synlett 2007, 1667. (e) Vo, N. T.;
Pace, R. D. M.; O’Hara, F.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130,
404. Review, see: (f) Palomo, C.; Mielgo, A. Angew. Chem., Int. Ed. 2006,
45, 7876. (g) Mielgo, A.; Palomo, C. Chem. Asian J. 2008, 3, 922.
(7) Other groups’ synthesis, see: (a) Hosokawa, S.; Sekiguchi, K.;
Enomoto, M.; Kobayashi, S. Tetrahedron Lett. 2000, 41, 6429. (b)
Hosokawa, S.; Sekiguchi, K.; Hayase, K.; Hirukawa, Y.; Kobayashi, S.
Tetrahedron Lett. 2000, 41, 6435. (c) Hosokawa, S.; Kobayashi, S. J. Synth.
Org. Chem. Jpn. 2001, 59, 1103. (d) McComas, C. C.; Perales, J. B.;
Vranken, D. L. V. Org. Lett. 2002, 4, 2337
(8) Hara, N.; Nakamura, S.; Shibata, N.; Toru, T. Chem. Eur. J. 2009,
15, 6790.
.
Org. Lett., Vol. 11, No. 17, 2009
3855