N. Narendar, S. Velmathi / Tetrahedron Letters 50 (2009) 5159–5161
4. Ley, S. V.; Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400.
5161
(IV)
5. Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428.
6. Ma, D.; Yao, J.; Wu, S.; Tao, F. J. Am. Chem. Soc. 1998, 120, 12459.
7. Zhang, H.; Ma, D. J. Org. Chem. 2005, 70, 5164.
8. Taubmann, C.; Tosh, E.; Ofele, K.; Hedtweck, E.; Herrmann, Wolfgang A. J.
Organomet. Chem. 2008, 693, 2231.
O
R
O
O
R
ArHN
(V)
O-
Cu
HN
(III)
R
9. Lu, Z.; Twieg, R. J. Tetrahedron Lett. 2005, 46, 2997.
-HX
Cu
O
10. Daweia, Ma; Chengfeng, Xia Org. Lett. 2001, 3, 2583.
11. Beare, N. A.; Hartwig, J. F. J. Org. Chem. 2002, 67, 541.
12. Del Zotto, A.; Prat, F. L.; Baratta, W.; Zangrando, E.; Rigo, P. Inorg. Chim. Acta
2009, 362, 97.
13. For reviews, see: Sardina, F. J.; Rapoport, H. Chem. Rev. 1996, 96, 1825.
14. Coppola, G. M.; Schuster, H. F. Asymmetric Synthesis; Wiley: New York, 1987.
15. Endo, Y.; Shudo, K.; Furuhata, K.; Ogura, H.; Sakai, S.; Aimi, N.; Hitotsuyangai,
Y.; Koyama, Y. Chem. Pharm. Bull. 1984, 32, 358.
O
Cu+
R
H2N
O
H2N
O-
X
16. Quick, J.; Saha, B.; Driedger, P. E. Tetrahedron Lett. 1994, 35, 8549.
17. Endo, Y.; Ohno, M.; Hirano, M.; Itai, A.; Shudo, K. J. Am. Chem. Soc. 1996, 118,
1841. and references therein.
18. Miller, W. H.; Ku, T. W.; Ali, F. E.; Bondinell, W. E.; Calvo, R. R.; Davis, L. D.;
Erhard, K. F.; Hall, L. B.; Huffman, W. F.; Keenan, R. M.; Kwon, C.; Newlander, K.
A.; Ross, S. T.; Samanen, J. M.; Takata, T. D.; Yuan, C. Tetrahedron Lett. 1995, 36,
9433.
R
O
H2N
O
O
(I)
R
Cu
Cu
NH2
X
19. Lesson, P. D.; Carling, R. W.; Smith, J. D.; Baker, R.; Foster, A. C.; Kemp, J. A. Med.
Chem. Res. 1991, 1, 64.
20. Nagata, R.; Ae, N.; Tanno, N. Bioorg. Med. Chem. Lett. 1995, 5, 1527.
21. De Lombaert, S.; Blanchard, L. Tetrahedron Lett. 1994, 35, 7513.
22. Hosokami, T.; Kuretani, M.; Higashi, K.; Asano, M.; Ohya, K.; Takasugi, N.;
Mafune, E.; Miki, T. Chem. Pharm. Bull. 1992, 40, 2712.
23. Semmelhack, M. F.; Rhee, H. Tetrahedron Lett. 1993, 34, 1395.
24. Joyce, L. L.; Evindar, G.; Batey, R. A. Chem. Commun. 2004, 446.
25. Lu, Z.; Twieg, R. J. Tetrahedron Lett. 2005, 46, 2997.
ArX
Scheme 2. Catalytic cycle.
(II)
26. Shafir, A.; Buchwald, S. L. J. Am. Chem. Soc. 2006, 128, 8742.
27. Combs, A. P.; Saubern, S.; Rafalski, M.; Patrick, Y. S.; Lam Tetrahedron Lett. 1999,
40, 1623.
p
-complex (IV), which decomposes to produce the N-aryl-a-amino
acid (V) and regenerates the cuprous ion.
28. Ma, D.; Yao, J. Tetrahedron: Asymmetry 1996, 7, 3075.
29. Rottger, S.; Sjoberg, Per J. R.; Mats, L. J. Comb. Chem. 2007, 9, 204.
30. Xu, L. W.; Xia, C. G.; Li, J. W.; Li, F. W.; Zhou, S. L. Catal. Commun. 2004, 5, 121.
31. Cherng, Y. I. Tetrahedron 2000, 56, 8287.
32. For a micro-review, see: Prasad, A.; Eycken, E. V. Eur. J. Org. Chem. 2008, 1133.
33. For microwave chemistry Reviews, see Kappe, C. O. Angew. Chem., Int. Ed. 2004,
43, 6250.
4. Conclusion
In brief, we have successfully developed a general method for
the microwave-assisted N-arylation of amino acids in DMF provid-
ing moderate to high yields, high catalytic activity, and selectivity.
The catalyst system is inexpensive, safe, and encounters fewer
environmental problems. CuI is an effective catalyst for this C–N
coupling reaction. We have reported a convenient microwave-en-
hanced, high speed, short, and economic way for the synthesis of
34. Larhed, M.; Lindeberg, G.; Hallberg, A. Tetrahedron Lett. 1996, 37, 8219.
35. General procedure for reaction of amino acid and aryl halides: Typically, a mixture
of
L-valine (1 mmol), 4-iodoacetophenone (1 mmol), CuI or Cu(OAc)2
(10 mol %), K2CO3 (1.5 mmol), and DMF (3 mL) was heated for 18 min in a
10 mL vessel. The vessel was sealed with a septum and placed inside the
microwave cavity in the Biotage microwave reactor and subjected to
microwave irradiation. The temperature was fixed at 140 °C. Initial
microwave irradiation of 150 W was used, with the temperature being
ramped from room temperature to the desired temperature of 140 °C
(measured using the built-in IR temperature device). Once this was reached,
the reaction mixture was held at this temperature until a total time of 15 min
had elapsed. During this time, the power was modulated automatically to hold
the reaction mixture at 140 °C. The mixture was not stirred during the reaction.
In order to cool the reaction mixture vessel, nitrogen gas was passed to the
surroundings of the vessel in microwave cavity, and after being cooled to room
temperature the reaction mixture was diluted with 10 mL of ethyl acetate and
10 mL of water. Under cooling with ice/water, concentrated HCl was added to
adjust the pH to 2–3. Then the organic layer was separated, and the aqueous
layer was extracted with ethyl acetate (5 Â 20 mL). The combined organic
layers were washed with brine, dried over MgSO4, and concentrated to dryness
by rotovapor. The resulting residual oil was loaded on a silica gel column and
eluted with ethyl acetate/petroleum ether (5:95) to afford the desired pure
coupling product. 1H NMR spectra were recorded with TMS as an internal
N-aryl-a-amino acids, which are common core structures for a
number of biologically active compounds. Though the present pro-
tocol uses DMF as a solvent further research is under progress with
alternative reaction conditions.
Acknowledgments
We gratefully acknowledge the support and funding from Dr.
M. Chidambaram, the Director of NITT and DST (SR/FTP/CS-142-
2006). We also wish to thank Dr. S. Perumal from Madurai Kamaraj
University, for extending the microwave reactor (Biotage) facility
for carrying out these reactions.
References and notes
standard on
(acetylphenyl)-
a
L
Brucker AM-400 spectrometer. Spectral data for N-
-valine: 1H NMR (400 MHz, CDCl3) d ppm, 7.8 (m, 2H), 6.5–
1. For a review, see: Lindley, J. Tetrahedron 1984, 40, 1433.
2. Yang, B.; Buchwald, S. L. J. Organomet. Chem. 1999, 576, 125.
3. Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 110, 2154.
6.6 (m, 2H), 4.0 (d, 1H), 2.5 (d, 1H), 2.1 (s, 3H), 1.05–1.1 (m, 6H).
Optical rotation [
a
]
50 = À222.00 (c 0.2, EtOH).