1950
R. Leyden, P. V. Murphy
LETTER
Chem. Int. Ed. 2002, 41, 231. (c) Risseeuw, M. D. P.;
Overhand, M.; Fleet, G. W. J.; Simone, M. I. Tetrahedron:
Asymmetry 2007, 18, 2001.
(9) Graf von Roedern, E.; Lohof, E.; Hessler, G.; Hoffmann,
M.; Kessler, H. J. Am. Chem. Soc. 1996, 118, 10156.
(10) Szabo, L.; Smith, B. L.; McReynolds, K. D.; Parrill, A. L.;
Morris, E. R.; Gervay, J. J. Org. Chem. 1998, 63, 1074.
(11) Tosin, M.; O’Brien, C.; Fitzpatrick, G. M.; Müller-Bunz, H.;
Glass, W. K.; Murphy, P. V. J. Org. Chem. 2005, 70, 4096.
(12) Srinivasan, M.; Sankararaman, S.; Hopf, H.; Dix, I.; Jones,
P. G. J. Org. Chem. 2001, 66, 4299.
(13) (a) Van der Eycken, E.; Sharpless, K. QSAR Comb. Sci.
2007, 26, 1115. (b) Kolb, H. C.; Finn, M. G.; Sharpless,
K. B. Angew. Chem. Int. Ed. 2001, 40, 2004. (c) Meldal,
M.; Tornoe, C. W. Chem. Rev. 2008, 108, 2952.
(14) Preparation of 3 and 5
To ice-cold 1 (0.95 g, 2.75 mmol) in CH2Cl2 (anhyd, 20 mL)
was added oxalyl chloride (0.25 mL, 3.03 mmol), followed
by DMF (0.005 mL) under N2 and the mixture stirred for 0.5
h. p-Xylenediamine (0.169 mg, 1.24 mmol) and DIPEA
(0.48 mL, 2.75 mmol) were stirred together in the presence
of 4 Å MS in CH2Cl2 (anhyd, 10 mL) until complete
dissolution of the amine. The solution containing the acid
chloride was added, and the mixture was stirred for a further
2 h at 0 °C. The mixture was extracted with CH2Cl2 (20 mL),
washed with NaHCO3 (2 × 15 mL), HCl (2 × 15 mL), brine
(2 × 15 mL), H2O (2 × 15 mL), dried (Na2SO4), filtered, and
the solvent removed to give a pale brown foam. Silica gel
chromatography (EtOAc–Cy, gradient elution, 1:1 to 2:1)
gave the protected diamide as a white foam (0.359 g, 37%).
This diamide (74.9 mg, 0.095 mmol) was dissolved in
MeOH–CH2Cl2 (3.5 mL, 6:1) to which was added NaOMe
in MeOH (0.1 mL of 1.09 M) and the mixture left to stir for
3 h at r.t. The solvent was removed and the residue dissolved
in H2O. Lyophilization gave 3 as an off-white powder (51
mg, quant.); [a]D –30.81 (c 0.37 g, H2O). 1H NMR (500
MHz, D2O): d = 7.24 (s, 4 H, ArH), 4.73 (d, J = 8.8 Hz, 2 H,
H-1), 4.37 (s, 4 H, PhCH2), 3.93 (d, J = 9.3 Hz, 2 H, H-5),
3.55–3.46 (m, 4 H, overlapping of H-3, H-4), 3.25 (m, 2 H,
H-2). 13C NMR (125 MHz, CDCl3): d = 170.2 (CONH),
136.9 (ArC), 127.7 (CH), 90.4, 77.1, 75.6, 72.6, 71.3 (each
CH), 42.7 (NHCH2Ph). LRMS: m/z found: 561.1 [M + Na]+,
537.2 [M – H]–. HRMS (ES): m/z calcd for C20H27O10N8:
539.1850; found: 539.1865 [M + H]+.
The bisazide 3 (60 mg, 0.111 mmol) was dissolved in a
solution of MeCN–H2O (1:1, 4.5 mL) to which was added
alkyne 4 (20 mg, 0.111 mmol) and the reactants stirred
before the addition of sodium ascorbate (2 mg, 0.011 mmol)
followed by CuSO4·5H2O (0.55 mL of a 0.01 M solution,
0.0055 mmol) and then stirred for a further 13 h. The
resulting precipitate was 5 (45 mg, 56%). 1H NMR (300
MHz, DMSO–HOD, 9:1): d = 8.38 (s, 2 H, C=CHN), 7.13
(s, 4 H, ArH), 6.95 (s, 4 H, ArH), 5.58 (d, J = 9.3 Hz, 2 H,
H-1), 5.04 (s, 4 H, PhOCH2), 4.20 (s, 4 H, PhCH2), 3.92 (d,
J = 9.7 Hz, 2 H, H-5), 3.85 (dd, J = 9.9, 8.1 Hz, 2 H, H-2),
3.55–3.51 (m, 2 H, H-4), 3.41 (dd, J = 9.5, 8.7 Hz, 2 H, H-
2). LRMS: m/z found: 747.1 [M + Na]+, 723.2 [M – H]–.
HRMS (ES): m/z calcd for C32H37O12N8: 725.2531; found:
725.2549 [M + H]+.
Figure 1 A low-energy structure of 5 (macromodel)
aged that a variety of novel chiral cyclophane16
derivatives could be generated by the concise approach
described herein.
References and Notes
(1) (a) McGavin, R. S.; Gagne, R. A.; Chervenak, M. C.;
Bundle, D. R. Org. Biomol. Chem. 2005, 3, 2723.
(b) Jaunzems, J.; Oelze, B.; Kirschning, A. Org. Biomol.
Chem. 2004, 2, 3448.
(2) Morales, J. C.; Zurita, D.; Penadés, S. J. Org. Chem. 1998,
63, 9212.
(3) (a) Szejtli, J. Pure Appl. Chem. 2004, 76, 1825.
(b) Muthana, S.; Yu, H.; Cao, H.; Cheng, J.; Chen, X. J. Org.
Chem. 2009, 74, 2928. (c) Velasco-Torrijos, T.; Murphy,
P. V. Tetrahedron: Asymmetry 2005, 16, 261. (d) Bodine,
K. D.; Gin, D. Y.; Gin, M. S. Org. Lett. 2005, 7, 4479.
(e) Bodine, K. D.; Gin, D. Y.; Gin, M. S. J. Am. Chem. Soc.
2004, 126, 1638.
(4) (a) Chandrasekhar, S.; Rao, C. L.; Nagesh, C.; Reddy, C. R.;
Sridhar, B. Tetrahedron Lett. 2007, 48, 5869. (b) Velasco-
Torrijos, T.; Murphy, P. V. Org. Lett. 2004, 6, 3961.
(5) For recent reviews on saccharides as polyfunctional
scaffolds, see: (a) Velter, I.; La Ferla, B.; Nicotra, F.
J. Carbohydr. Chem. 2006, 25, 97. (b) Meutermans, W.;Le,
G. T.; Becker, B. ChemMedChem 2006, 1, 1164.
(c) Murphy, P. V.; Dunne, J. L. Curr. Org. Synth. 2006, 3,
403.
(6) A triazacyclophane has been investigated in bioactive
molecule development, see: (a) Opatz, T.; Liskamp, R. M. J.
Org. Lett. 2001, 3, 3499. (b) Monnee, M. C. F.; Brouwer,
A. J.; Verbeek, L. M.; van Wageningen, A. M. A.; Liskamp,
R. M. J. Bioorg. Med. Chem. Lett. 2001, 11, 1521.
(7) For selected publications on synthesis and applications of
glycophanes, see: (a) Bukownik, R. R.; Wilcox, C. S. J. Org.
Chem. 1988, 53, 463. (b) Jimenez-Barbero, J.; Junquera, E.;
Martin-Pastor, M.; Sharma, S.; Vicent, C.; Penades, S.
J. Am. Chem. Soc. 1995, 117, 11198. (c) Savage, P. B.;
William, D.; Dalley, N. K. J. Inclusion Phenom. Mol.
Recognit. Chem. 1997, 29, 335. (d) Morales, J. C.; Penades,
S. Angew. Chem. Int. Ed. 1998, 37, 654. (e) Belghiti, T.;
Joly, J.-P.; Didierjean, C.; Dahaoui, S.; Chapleur, Y.
Tetrahedron Lett. 2002, 43, 1441.
(15) (a) Mohamadi, F.; Richards, N. G. J.; Guida, W. C.;
Liskamp, R.; Lipton, M.; Caufield, C.; Chang, G.;
Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11,
440. (b) Still, W. C.; Tempczyk, A.; Hawley, R. C.;
Hendrickson, T. J. Am. Chem. Soc. 1990, 112. 6127.
(16) For a recent application of cyclophanes, see: Yoon, I.;
Benitez, D.; Zhao, Y.-L.; Miljanic, O. S.; Kim, S.-Y.;
Tkatchouk, E.; Leung, K. C.-F.; Khan, S. I.; Goddard, W. A.
III.; Stoddart, J. F. Chem. Eur. J. 2009, 15, 1115.
(8) (a) Gruner, S. A. W.; Locardi, E.; Lohof, E.; Kessler, H.
Chem. Rev. 2002, 102, 491. (b) Schweizer, F. Angew.
Synlett 2009, No. 12, 1949–1950 © Thieme Stuttgart · New York