176
B. Karami et al. / Chinese Chemical Letters 23 (2012) 173–176
2. General procedure for the rapid synthesis of calix[4]resorcinarene derivatives
A mixture of resorcinol 1 (1 mmol), aryl aldehyde 2 (1 mmol), and Fe3O4 nanoparticles (5 mol%) was stirred and
heated at 120 8C in a preheated oil bath for appropriate time (Table 2). After completion of the reaction as indicated by
TLC (ethyl acetate/n-hexane 7:3), the reaction mixture was cooled down to room temperature and dissolved in
methanol to separate the catalyst through the magnetic absorption by a magnet. After separating the catalyst, the
solution was heated and filtered to afford the pure product 3. At the end of the reaction, the separated catalyst was
washed with diethyl ether, dried at 130 8C for 1 h, and reused in another reaction.
To conclude, a green synthetic route to novel and known calix[4]resorcinarene derivatives using Fe3O4
nanoparticles under solvent-free conditions was presented. Using this method not only gives high yield and purity but
also is a cheap, speedy, facile, and eco-friendly method throughout the course of the reaction.
References
[1] S.M. Baghbanian, M. Farhang, R. Baharfar, Chin. Chem. Lett. 22 (2011) 555.
[2] (a) U. Laska, C.G. Frost, P.K. Plucinski, G.J. Price, Catal. Lett. 122 (2008) 68;
(b) H. Nagabhushana, S. Sandeep Saundalkar, L. Muralidhar, et al. Chin. Chem. Lett. 22 (2011) 143;
(c) P. Tundo, P.T. Anastas, Green Chemistry: Challenging Perspectives, Oxford Science, Oxford, 1999.
[3] (a) H.W. Wang, Y.Q. Feng, J.Q. Xue, et al. Chin. Chem. Lett. 19 (2008) 901;
(b) B.Q. Hong, F.F. Yang, H.Y. Guo, et al. Chin. Chem. Lett. 20 (2009) 1039.
[4] (a) B. Botta, M.D.I. Cassani, D. Misiti, et al. Curr. Org. Chem. 337 (2005) 9;
(b) Y. Ge, C. Yan, J. Chem. Res. 279 (2004) 33.
[5] J.E. Gualbert, P. Shahgaldian, A. Lazar, et al. J. Inclusion Phenom. Macrocycl. Chem. 37 (2004) 48.
[6] M.W. Heaven, C.L. Rastonb, J.L. Atwood, Chem. Commun. 892 (2005) 7.
[7] L.R. MacGillivray, J.L. Atwood, J. Solid State Chem. 199 (2000) 152.
[8] T.W. Bell, N.M. Hext, Chem. Soc. Rev. 589 (2004) 33.
[9] G.M. Martinez, C.R. Teran, O.A. Tlapanco, et al. Fullerene Sci. Technol. 475 (2000) 8.
[10] K. Yonetake, T. Nakayama, M. Ueda, J. Mater. Chem. 761 (2001) 11.
[11] T. Nakayama, D. Takhashi, K. Takeshi, et al. J. Photopolym. Sci. Technol. 347 (1999) 12.
[12] N. Tbeur, T. Rhlalou, M. Hlaibi, et al. Carbohydr. Res. 409 (2000) 329.
[13] O. Pietraszkiewicz, M. Pietraszkiewicz, J. Inclusion Phenom. Macrocycl. Chem. 261 (1999) 35.
[14] K. Ichimura, E. Kurita, M. Ueda, Eur. Pat. EP 671220 (1995).
[15] N. Yoshino, A. Satake, Y. Kobuke, Angew. Chem. Int. Ed. 457 (2001) 40.
[16] E. Gaunert, H. Barnier, L. Nicod, et al. Sep. Sci. Technol. 2309 (1997) 32.
[17] H.W. Wang, Y.Q. Feng, C. Chen, J.Q. Xue, Chin. Chem. Lett. 20 (2009) 1271.
[18] Q. Peng, X.H. Tang, Chin. Chem. Lett. 20 (2009) 13.
[19] (a) A. Bayer, Ber. Dtssch. Chem. Ges. 5 (1872) 25;
(b) A. Bayer, Ber. Dtssch. Chem. Ges. 5 (1872) 280.
[20] (a) B. Karami, S. Khodabakhshi, M. Nikrooz, Polycyclic Aromat. Compd. 97 (2011) 31;
(b) S.E. Mallakpour, B. karami, B. Sheikholeslami, Polym. Int. 98 (1998) 45.
[21] D. Bai, Q. Wang, Y. Song, et al. Catal. Commun. 684 (2011) 12.
[22] J. Park, K. An, Y. Hwang, et al. Nat. Mater. 891 (2004) 3.
[23] Y. Liu, P. Liu, Z. Su, et al. Appl. Surf. Sci. 2020 (2008) 255.
[24] S.C. Wuang, K.G. Neoh, E.T. Kang, et al. J. Mater. Chem. 3354 (2007) 17.
[25] Y.S. Kang, S. Rishbud, J.F. Rabolt, et al. Chem. Mater. 2209 (1996) 8.