J. Tripathy, M. Bhattacharjee / Tetrahedron Letters 50 (2009) 4863–4865
4865
Table 2
In summary, we have demonstrated that the same catalyst can
be used for C–C and C–O bond formation when reaction conditions
are changed. In addition, the catalyst can be synthesized very eas-
ily from a reaction of commercially available [Ru(PPh3)3Cl2] with
NaBPh4 in acetonitrile.15a In contrast to the catalytic system re-
ported earlier1c the present catalyst does not require any expensive
phosphine additives such as, P(p-Cl–C6H4)3 or P(Fur)3. We are now
investigating the details of the dimerization reactions of alkynes.
Addition of carboxylic acid to alkynes catalyzed by 1a
Entry
Alkyne
Acid
Product
Yieldb (%)
1
2
3
4
5
6
7
8
9
2a
2b
2c
2d
2e
2f
3a
3b
3c
3d
3e
3f
4a
4b
4c
4d
4e
4f
4g
4h
4i
78
82
73
73
70
72
70
74
70
62
65
71
2g
2h
2i
2j
2k
2l
3g
3a
3a
3a
3a
3a
Acknowledgements
10
11
12
4j
4k
4l
We thank the Department of Science and Technology, Govern-
ment of India, New Delhi for NMR facility and Professor A. Basak,
Department of Chemistry, Indian Institute of Technology, Kharag-
pur, India for HPLC. We also thank the reviewers for their helpful
comments.
a
Conditions: 10 mmol alkynes, 10 mmol carboxylic acid, 0.1 mmol 1, 0.1 mmol
BF3ꢀEt2O, toluene 80 °C.
b
Isolated yield.
Supplementary data
served. The reaction fails in the cases of amino acids, oxalic acid
and cinnamic acid. This may be due to the chelation of the metal
centre by the acid, thus preventing coordination of phenylacety-
lene to the ruthenium centre. The reaction is also, effective in the
case of substituted phenylacetylenes such as 1-ethynyl-4-fluoro-
benzene, or 1-ethynyl-4-methoxybenzene (Table 2, entries 8 and
9) and other substituted aromatic and heteroaromatic alkynes such
as 2-ethynyl-6-methoxynaphthalene and 2-ethynylpyridine (Table
2entries 10 and 11) and aliphatic alkyne, 1-hexyne (Table 2, entry
12).
Supplementary data associated with this article can be found, in
References and notes
1. (a) Bruneau, C.; Dixneuf, P. H. Chem. Commun. 1997, 507; (b) Doucet, H.;
Martin-Vaca, B.; Bruneau, C.; Dixneuf, P. H. J. Org. Chem. 1995, 60, 7247; (c)
Goossen, L. J.; Paetzold, J.; Koley, D. Chem. Commun. 2003, 706; (d)
Henkelmann, J. Applied Homogeneous Catalysis with Organometallic
Compounds: Applications-Developments 2000, 269.
2. (a) Rothman, E. S.; Moore, G. G. Tetrahedron Lett. 1969, 10, 2553; (b) Rothman,
E. S.; Moore, G. G.; Speca, A. N. Tetrahedron Lett. 1969, 10, 5205.
3. (a) Cort, A. D. J. Org. Chem. 1991, 56, 6708; (b) Stavber, S.; Sket, B.; Zajc, B.;
Zupan, M. Tetrahedron 1989, 45, 6003.
4. Ema, T.; Maneo, S.; Takaya, Y.; Sakai, T.; Utaka, M. J. Org. Chem. 1996, 61, 8610.
5. (a) Demonceau, A.; Saive, E.; de Froidmont, Y.; Noels, A. F.; Hubert, A. J.
Tetrahedron Lett. 1992, 33, 2009; (b) Motherwell, W. B.; Roberts, L. R. Chem.
Commun. 1992, 1582.
6. For example: Jung, M. E.; Hudspeth, J. P. J. Am. Chem. Soc. 1978, 100, 4309.
7. Monthéard, J. P.; Camps, M.; Seytre, G.; Guillet, J.; Dubois, J. C. Angew.
Makromol. Chem. 1978, 72, 45.
The 1H NMR spectrum of the CD3CN solution of 1, BF3ꢀEt2O and
acetic acid at room temperature shows a peak at 2.22 ppm (singlet)
along with other peaks due to 1, diethyl ether and unreacted acetic
acid. The signal at 2.22 ppm can be assigned to the –CH3 protons of
the ruthenium-coordinated acetate.18 When phenylacetylene is
added to this solution new signals appear at 3.45 ppm (singlet)
and in the 7.35 to 7.65 ppm region. The singlet at 3.45 ppm is
due to the H–C proton of the coordinated phenylacetylene as evi-
denced by the marked shift of the acetylinic proton of the uncoor-
dinated phenylacetylene, which appears at 3.05 ppm. Thus it is
clear that, in the present case both the substrates are coordinated
to the ruthenium centre.
8. (a) Bruneau, C.; Dixneuf, P. H. Acc. Chem. Res. 1999, 32, 311; (b) Ritleng, V.;
Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
9. (a) Trost, B. M. Science 1991, 254, 1471; (b) Ghosh, R.; Zhang, X.; Achord, P.;
Emge, T. J.; Krogh-Jespersen, K.; Goldman, A. S. J. Am. Chem. Soc. 2007, 129, 853;
(c) Rubina’, M.; Gevorgyan, V. J. Am. Chem. Soc. 2001, 123, 11107; (d) Ogoshi, S.;
Ueta, M.; Oka, M.; Kurosawa, H. Chem. Commun. 2004, 2732.
It may be noted that, Goossen et al. have used the ruthenium
catalyst precursor, [(p-cumene)RuCl2]2 and 2 equiv of phosphine li-
gand as the catalyst for the reaction between carboxylic acid and
alkyne.1c Reaction of neutral ligands with [(p-cumene)RuCl2]2
produces complex of the type, [(p-cumene)Ru(L)Cl2].19 Thus it is
expected that, addition of 2 equiv of phosphine ligands to [(p-cu-
mene)RuCl2]2 will generate complex of the type[(p-cumene)
Ru(L)Cl2]. Coordination of both alkyne and carboxylate to the
ruthenium centre in such complexes is not easy. Thus, it has been
suggested that, addition of base facilitates the formation of carbox-
ylate anion which attacks ruthenium-coordinated alkyne and
unsaturated esters are formed.1c However, in this case due to the
labile nature of coordinated acetonitrile, both alkyne and carboxyl-
ate get coordinated to the ruthenium centre as evidenced by 1H
NMR spectrum of the reaction mixture and the reaction takes place
by the insertion of triple bond into Ru–O bond.
10. (a) Mitsudo, T.; Hori, Y.; Watanabe, Y. J. Org. Chem. 1985, 50, 1566; (b) Mitsudo,
T.; Hori, Y.; Yamakawa, Y.; Watanabe, Y. Tetrahedron Lett. 1986, 27, 2125; (c)
Ruppin, C.; Dixneuf, P. Tetrahedron Lett. 1986, 27, 6323; (d) Mitsudo, T.; Hori,
Y.; Yamakawa, Y.; Watanabe, Y. J. Org. Chem. 1987, 52, 2230; (e) Neveux, M.;
Seiller, B.; Hagedorn, F.; Bruneau, C.; Dixneuf, P. J. Organomet. Chem. 1993, 451,
133; (f) Leadbeater, N. E.; Scott, K. A.; Scott, L. J. J. Org. Chem. 2000, 65, 3231; (g)
Ye, S.; Leong, W. K. J. Organomet. Chem. 2006, 691, 1117.
11. (a) Yi, C. S.; Liu, N. Organometallics 1996, 15, 3968; (b) Chen, X.; Xue, P.; Sung, H.
H. Y.; Williams, I. D.; Peruzzini, M.; Bianchini, C.; Jia, G. Organometallics 2005,
24, 4330; (c) Yi, C. S.; Liu, N. Organometallics 1997, 16, 3910; (d) Katayama, H.;
Yari, H.; Tanaka, M.; Ozawa, F. Chem. Commun. 2005, 4336.
12. (a) Rotem, M.; Shvo, Y. Organometallics 1983, 2, 1689; (b) Rotem, M.; Shvo, Y. J.
Organomet. Chem. 1993, 448, 189.
13. Le Paih, J.; Monnier, F.; Dérien, S.; Dixneuf, P. H.; Clot, E.; Eisenstein, O. J. Am.
Chem. Soc. 2003, 125, 11964.
14. (a) Melis, K.; Samulkiewicz, P.; Rynkowski, J.; Verpoort, F. Tetrahedron Lett.
2002, 43, 2713; (b) Melis, K.; Opstal, T.; Verpoort, F. Eur. J. Org. Chem. 2002,
3779; (c) Opstal, T.; Verpoort, F. Tetrahedron Lett. 2002, 43, 9259.
15. (a) Naskar, S.; Bhattacharjee, M. J. Organomet. Chem. 2005, 690, 5006; (b)
Naskar, S.; Bhattacharjee, M. Tetrahedron Lett. 2007, 48, 465; (c) Naskar, S.;
Bhattacharjee, M. Tetrahedron Lett. 2007, 48, 3367.
Effect of base on the 1 catalyzed dimerization of phenylacety-
lene has also been studied. In the presence of Et3N, Z-dimerization
product is obtained as a major product (56%). Along with the Z-
dimerization product, E-dimerization product (36%) and addition
product (8%) are also obtained (Table 1). Thus it is clear that,
Na2CO3 is the ideal base for dimerization reaction.
16. Kawano, H.; Masaki, Y.; Matsunaga, T.; Hiraki, K.; Onishi, M.; Tsubomura, T. J.
Organomet. Chem. 2000, 601, 69.
17. Onak, T. P.; Landesman, H.; Williams, R. E.; Shapiro, I. J. Phys. Chem. 1959, 63,
1533.
18. Bakhmutov, V. I.; Berry, J. F.; Cotton, F. A.; Ibragimov, S.; Murillo, C. A. Dalton
Trans. 2005, 1989.
19. Bennett, M. A.; Smith, A. K. Dalton Trans. 1974, 233.