LETTER
Synthesis of 5-Acyl-3,4-dihydropyrimidine-2-thiones
1739
washed first with Et2O (2 × 1 mL), then hot water (2 × 1 mL) and
dried under vacuum over P2O5. When Et2O was added and the prod-
uct did not precipitate, the crude product was dissolved in DMSO
and purified by HPLC-MS affording pure compounds.
a
O
O
O
CHO
CO2H
loading
1 mmol/g
1-[4-(4-Hydroxyphenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-
pyrimidin-5-yl]ethanone (entry 9)
5
6
O
O
1H NMR (DMSO-d6): d = 10.19 (s, 1 H), 9.65 (s, 1 H), 9.43 (s, 1 H,
Ar-OH), 7.02 (d, J = 7.8 Hz, 2 H), 6.71 (d, J = 7.8 Hz, 2 H), 5.17 (d,
J = 3.7 Hz, 1 H), 2.32 (s, 3 H), 2.09 (s, 3 H). MS (ES+): m/z = 263.3
(M + H)+.
OEt
b
aryl esters
7a–d
crude
8a–d
X
X
OH
[4-(2,6-Dichlorophenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro-
pyrimidin-5-yl]phenylmethanone (entry 16)
1H NMR (DMSO-d6): d = 10.24 (s, 1 H), 9.42 (s, 1 H), 7.60–7.20
(m, 8 H), 6.39 (s, 1 H), 1.57 (s, 3 H). MS (ES+): m/z = 378.3 (M +
H)+.
X
O
c, d
9a
OMe
F
Cl
Br
8a–d
resin +
6
9b
9c
9d
10–15%
3 steps
NH
crude
Me
N
S
[4-(2,6-Dichlorophenyl)-1,6-dimethyl-2-thioxo-1,2,3,4-tetrahy-
dropyrimidin-5-yl]phenylmethanone (entry 17)
1H NMR (DMSO-d6): d = 9.43 (d, J = 2.5 Hz, 1 H), 7.80–7.20 (m,
8 H), 6.33 (s, 1 H), 3.63 (s, 3 H), 1.83 (s, 3 H). MS (ES+): m/z =
392.3 (M + H)+.
H
X
9a–d
Scheme 3 Solid-phase, solvent-free protocol using the supported
aldehyde. Reagents and conditions: (a) DCC, DMAP, 3-OH-benz-
aldehyde, CH2Cl2, r.t., 48 h; (b) NaH, acetone, Et2O, 3–5 d; (c) thiou-
rea, Yb(OTf)3 (0.05 equiv), 110 °C, 4 h; (d) K2CO3, MeOH, r.t. then
HPLC/MS purification.
Acknowledgment
We thank the ‘Conseil Regional Ile de France’ and l’Association
pour la Recherche sur le Cancer (ARC, contract number 5197) for
financial support.
urea and a large excess of diketone 8a–d in the presence
of catalytic amounts of Yb(OTf)3 at 110 °C. After remov-
al of all excess reagents by simple washings, cleavage was
performed using K2CO3/MeOH to afford pure compounds
after HPLC-MS purification. Although the overall yields
(10–15% for 3 steps) were low, this non-optimized, solid-
phase protocol allowed the preparation of compounds 9a–
d (X = OMe, Cl, Br, I) in excellent purities. Since very
few b-diketones are commercially available, this protocol
paves the way for major diversification on the aroyl part
of those adducts.
References and Notes
(1) Present address: The Beatson Institute for Cancer Research,
Garscube Estate, Switchback Road, Bearsden, Glasgow G61
1BD, UK
(2) Present address: Hybrigenics, 3-5 Impasse Reille, 75014
Paris, France
(3) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
(4) (a) Blangy, A.; Lane, H. A.; d’Herin, P.; Harper, M.; Kress,
M.; Nigg, E. A. Cell 1995, 83, 1159. (b) Mayer, T. U.;
Kapoor, T. M.; Haggarty, S. J.; King, R. W.; Schreiber, S. L.;
Mitchison, T. J. Science 1999, 286, 971.
(5) (a) Maliga, Z.; Kapoor, T. M.; Mitchison, T. J. Chem. Biol.
2002, 9, 989. (b) DeBonis, S.; Simorre, J. P.; Crevel, I.;
Lebeau, L.; Skoufias, D. A.; Blangy, A.; Ebel, C.; Gans, P.;
Cross, R.; Hackney, D. D.; Wade, R. H.; Kozielski, F.
Biochemistry 2003, 42, 338.
(6) (a) Jackson, J. R.; Patrick, D. R.; Dar, M. M.; Huang, P. S.
Nat. Rev. Cancer 2007, 7, 107. (b) Duhl, D.; Renhowe, P.
Curr. Opin. Drug Discovery Dev. 2005, 431. (c) Wood, K.
W.; Cornwell, W. D.; Jackson, J. R. Curr. Opin. Pharmacol.
2001, 1, 370.
(7) (a) Lopez, R.; Rousseau, B.; Kozielski, F.; Skoufias, D.;
DeBonis, S. FR patent 2883284, 2005. (b) Lopez, R.;
Rousseau, B.; Kozielski, F.; Skoufias, D.; DeBonis, S.
WO patent 2006097617, 2006.
In conclusion, we have synthesized a series of 5-acyl-3,4-
dihydropyrimidine-2-thiones using a solvent-free, solu-
tion-phase procedure even in the least favorable cases:
b-diketones and substituted thioureas. In the case of 3-
hydroxyl-substituted benzaldehyde, we showed that the
attachment of this aldehyde to a resin enabled the prepa-
ration of the Biginelli adduct starting directly from the
aryl ester precursors of the corresponding b-diketones.
Due to the ready availability of such esters compared to
the b-diketones, this methodology opens the way to the
facile synthesis of analogues with increased diversity at
the aroyl position, which are difficult to achieve via stan-
dard procedures. Details of the biological evaluation of
this promising series will be reported in due course.
(8) (a) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360. (b) For a
review, see: Kappe, C. O. Tetrahedron 1993, 49, 6937; and
references cited therein. (c) Kappe, C. O. Acc. Chem. Res.
2000, 33, 879. (d) For the mechanism, see: Kappe, C. O.
J. Org. Chem. 1997, 62, 7201. (e) Enantioselective version:
Huang, Y.; Fengyue, Y.; Zhu, C. J. Am. Chem. Soc. 2005,
127, 16386. Two-step procedures: (f) Atwal, K. S.;
O’Reilly, B. C. Heterocycles 1987, 26, 1185. (g) Atwal,
K. S.; O’Reilly, B. C.; Gougoutas, J. Z.; Malley, M. F.
Heterocycles 1987, 26, 1189. Microwaves: (h) Misra,
Solvent-Free Biginelli Condensations (Table 1); Typical Proce-
dure
In a screw-capped vial, a mixture of the aldehyde (1 mmol, 1 equiv),
the b-diketone (1 mmol, 1 equiv) and thiourea or N-alkylthiourea
(1.5 mmol, 1.5 equiv) was heated at 110 °C without stirring for 3 h.
In some cases (see Table 1), Yb(OTf)3 (0.05 equiv) was used as cat-
alyst. The reaction mixture was allowed to cool to room temperature
and was washed with Et2O (4 mL). The resulting solid was filtered,
Synlett 2009, No. 11, 1737–1740 © Thieme Stuttgart · New York