5012 Organometallics 2009, 28, 5012–5016
DOI: 10.1021/om900542j
Transition Metal Acetylide Rearrangement and Coupling Induced by
Coordinative Unsaturation
Chengbao Ni,† Gary J. Long,‡ and Philip P. Power*,†
†Department of Chemistry, One Shields Avenue, University of California, Davis, California 95616, and
‡Department of Chemistry, Missouri University of Science and Technology, University of Missouri,
Rolla, Missouri 65409-0010
Received June 22, 2009
The reaction of {Ar0Fe(μ-Br)}2 (Ar0 = C6H3-2,6-(C6H3-2,6-iPr2)2) with LiCtCPh afforded the
unusual 1,3-butadiene-1,4-diyl Fe(I)-coupled derivative Fe2{Ar0CdC(Ph)-C(Ph)dCAr0} (1), whereas
the reaction of {Ar0Fe(μ-Br)}2 with LiCtCtBu yielded the monomeric Fe(II) “ate” complex Ar0Fe-
(CtCtBu)2{Li(THF)2} (2). Complexes 1 and 2 were characterized by X-ray crystallography, NMR,
and UV-vis spectroscopy and magnetic measurements. In 1 the dimeric structure is a result of Ar0
group transfer to the iron-bound carbon of the acetylide ligand and subsequent dimerization via
coupling ofthe phenyl-substitutedcarbons. The irons are antiferromagnetically coupled, and the iron-
ꢀ
˚
iron separation is 2.5559(3) A. In 2 the high-spin iron atom has distorted trigonal-planar coordination
witha THF-complexed lithium ion associatedwiththeAr0Fe(CtCtBu)2 anion via interactions withthe
tBu-substituted alkyne carbons.
Introduction
they display a vast number of insertion and coupling reac-
tions with unsaturated species.12-23 Acetylide derivatives of
iron are well known and are generally stabilized by phos-
phine, Cp or Cp* (Cp = η5-C5H5; Cp* = η5-C5Me5), or
carbonyl co-ligands in high-coordinate complexes (coordi-
nation numbers g5). Low-coordinate (2 or 3) iron acetylide
complexes are rare, but they can be stabilized with use of
bulky β-diketiminate co-ligands, as in HC[C(tBu)N(2,6-iPr2-
C6H3)]2FeCtCR (R = SiMe3 or Ph),24,25 and display single
Fe-C bonds to the acetylide group. We have shown that
several unusual low-coordinate iron complexes can be
synthesized with use of the bulky terphenyl Ar026 and related
ligands27 and wished to extend these results to low-coordinate
The acetylide group (-CtCR) group is an extremely
versatile ligand, which can bond to one, two, or three
transition metal centers in a variety of coordination modes,
while donating up to five electrons in bonding.1-4 Transition
metal acetylides have attracted considerable interest for
numerous reasons that include their reactivity toward a
variety of small molecules to give numerous products,5-8
metal chalcogenides to form C-E (E = S and Se) bonds,9,10
or metal carbonyls to yield a variety of clusters.11 In addition,
*To whom correspondence should be addressed. E-mail: pppower@
ucdavis.edu.
(1) Nast, R. Coord. Chem. Rev. 1982, 47, 89.
(15) Carty, A. J.; Hogarth, G.; Enright, G.; Frapper, G. Chem.
Commun. 1997, 1883.
(16) Mathur, P.; Ahmed, M. O.; Kaldis, J. H.; McGlinchey, M. J. J.
(2) Carty, A. J. Pure Appl. Chem. 1982, 54, 113.
(3) Sappa, E.; Tiripicchio, A.; Braunstein, P. Coord. Chem. Rev. 1985,
65, 219.
Chem. Soc., Dalton Trans. 2002, 619.
(4) Raithby, P. R.; Rosales, M. J. Adv. Inorg. Chem. 1985, 29, 169.
(5) Yi, C. S.; Liu, N. H.; Rheingold, A. L.; LiableSands, L. M.; Guzei,
I. A. Organometallics 1997, 16, 3729.
(6) Kirchbauer, F. G.; Pellny, P. M.; Sun, H. S.; Burlakov, V. V.;
Arndt, P.; Baumann, W.; Spannenberg, A.; Rosenthal, U. Organome-
tallics 2001, 20, 5289.
(17) Rosenthal, U.; Pellny, P. M.; Kirchbauer, F. G.; Burlakov, V. V.
Acc. Chem. Res. 2000, 33, 119.
(18) Shiu, C. W.; Chi, Y.; Chung, C.; Peng, S. M.; Lee, G. H.
Organometallics 1998, 17, 2970.
(19) Busetto, L.; Marchetti, F.; Zacchini, S.; Zanotti, V.; Zoli, E. J.
Organomet. Chem. 2005, 690, 1959.
(20) Maclaughlin, S. A.; Johnson, J. P.; Taylor, N. J.; Carty, A. J.;
(7) Bruce, M. I.; Liddell, M. J.; Snow, M. R.; Tiekink, E. R. T. J.
Organomet. Chem. 1988, 352, 199.
Sappa, E. Organometallics 1983, 2, 352.
(8) Mathur, P.; Ghosh, A. K.; Mukhopadhyay, S.; Srinivasu, C.;
Mobin, S. M. J. Organomet. Chem. 2003, 678, 142.
(9) Mathur, P.; Bhunia, A. K.; Srinivasu, C.; Mobin, S. M. Phos-
phorus Sulfur Silicon Relat. Elem. 2004, 179, 899.
(10) Mathur, P.; Srinivasu, C.; Ahmed, M. O.; Puranik, V. G.;
Umbarkar, S. B. J. Organomet. Chem. 2002, 659, 196.
(11) Chi, Y.; Wu, C. H.; Peng, S. M.; Lee, G. H. Organometallics
1990, 9, 2305.
(21) Onitsuka, K.; Ogawa, H.; Joh, T.; Takahashi, S.; Yamamoto,
Y.; Yamazaki, H. J. Chem. Soc., Dalton Trans. 1991, 1531.
(22) Barnea, E.; Andrea, T.; Berthet, J. C.; Ephritikhine, M.; Eisen,
M. S. Organometallics 2008, 27, 3103.
(23) Carty, A. J.; Taylor, N. J.; Lappert, M. F.; Pye, P. L.; Smith, W.
F. J. Chem. Soc., Chem. Commun. 1978, 1017.
(24) Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C.
J.; Lachicotte, R. J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857.
(25) Eckert, N. A.; Smith, J. M.; Lachicotte, R. J.; Holland, P. L.
Inorg. Chem. 2004, 43, 3306.
(12) Jennings, M. C.; Manojlovic-Muir, L.; Puddephatt, R. J. J. Am.
Chem. Soc. 1989, 111, 745.
(13) Benvenutti, M. H. A.; Vargas, M. D.; Braga, D.; Grepioni, F.;
Mann, B. E.; Naylor, S. Organometallics 1993, 12, 2947.
(14) Smith, W. F.; Taylor, N. J.; Carty, A. J. J. Chem. Soc., Chem.
Commun. 1976, 896.
(26) Ni, C. B.; Fettinger, J. C.; Long, G. J.; Power, P. P. Inorg. Chem.
2009, 48, 2443.
(27) Ni, C. B.; Fettinger, J. C.; Long, G. J.; Brynda, M.; Power, P. P.
Chem. Commun. 2008, 6045.
r
pubs.acs.org/Organometallics
Published on Web 08/12/2009
2009 American Chemical Society