C O M M U N I C A T I O N S
Chart 1. Scope of the Reactiona b
,
Acknowledgment. We thank the National Science Foundation
for support of this research (Grant CHE-0911192). Startup support
from Rutgers, The State University of New Jersey is gratefully
acknowledged. We thank Dr. Tom Emge for crystallographic analysis.
Supporting Information Available: Additional discussion, experi-
mental procedures, and characterization data including X-ray crystal
structures of 5b and 5e. This material is available free of charge via the
References
(1) For reviews on C-H bond functionalizations, see:(a) Godula, K.; Sames,
D. Science 2006, 312, 67. (b) Dick, A. R.; Sanford, M. S. Tetrahedron
2006, 62, 2439. (c) Davies, H. M. L. Angew. Chem., Int. Ed. 2006, 45,
6422. (d) Alberico, D.; Scott, M. E.; Lautens, M. Chem. ReV. 2007, 107,
174. (e) Bergman, R. G. Nature 2007, 446, 391. (f) Davies, H. M. L.;
Manning, J. R. Nature 2008, 451, 417. (g) Thansandote, P.; Lautens, M.
Chem.sEur. J. 2009, 15, 5874. (h) Li, C.-J. Acc. Chem. Res. 2009, 42,
335.
(2) For an excellent review on the functionalization of sp3 C-H bonds adjacent
to nitrogen in heterocycles, see:Campos, K. R. Chem. Soc. ReV. 2007, 36,
1069.
(3) (a) Pastine, S. J.; McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2005,
127, 12180. (b) Pastine, S. J.; Sames, D. Org. Lett. 2005, 7, 5429. (c)
Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683. (d)
McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402. (e) Shikanai,
D.; Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166.
(f) Mahoney, S. J.; Moon, D. T.; Hollinger, J.; Fillion, E. Tetrahedron
Lett. 2009, 50, 4706. (g) McQuaid, K. M.; Long, J. Z.; Sames, D. Org.
Lett. 2009, 11, 2972. (h) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T.
Chem. Lett. 2009, 38, 524.
a Reactions were performed on a 0.3 mmol scale. The ee’s were
determined by HPLC analysis, and dr’s by 1H NMR. b Ni(ClO4)2 ·6H2O
was used instead of Mg(OTf)2.
(4) For selected examples of 1,5-hydride shift processes in nonconjugated
systems, see:(a) Woodward, R. B.; Sondheimer, F.; Mazur, Y. J. Am. Chem.
Soc. 1958, 80, 6693. (b) Ten Broeke, J.; Douglas, A. W.; Grabowski, E. J. J.
J. Org. Chem. 1976, 41, 3159. (c) Heathcock, C. H. Proc. Natl. Acad. Sci.
U.S.A. 1996, 93, 14323. (d) Woelfling, J.; Frank, E.; Schneider, G.; Tietze,
L. F. Eur. J. Org. Chem. 2004, 90. (e) Cui, L.; Peng, Y.; Zhang, L. J. Am.
Chem. Soc. 2009, 131, 8394.
(5) For a review on the synthesis of tetrahydroquinolines, see:Katritzky, A. R.;
Rachwal, S.; Rachwal, B. Tetrahedron 1996, 52, 15031.
(6) For reviews, see:(a) Meth-Cohn, O.; Suschitzky, H. AdV. Heterocycl. Chem.
1972, 14, 211. (b) Verboom, W.; Reinhoudt, D. N. Recl. TraV. Chim. Pays-
Bas 1990, 109, 311. (c) Meth-Cohn, O. AdV. Heterocycl. Chem. 1996, 65,
1. (d) Quintela, J. M. Recent Res. DeV. Org. Chem. 2003, 7, 259. (e) Matyus,
P.; Elias, O.; Tapolcsanyi, P.; Polonka-Balint, A.; Halasz-Dajka, B. Synthesis
2006, 2625.
(7) For selected examples, see:(a) Verboom, W.; Reinhoudt, D. N.; Visser,
R.; Harkema, S. J. Org. Chem. 1984, 49, 269. (b) Nijhuis, W. H. N.;
Verboom, W.; Reinhoudt, D. N.; Harkema, S. J. Am. Chem. Soc. 1987,
109, 3136. (c) Nijhuis, W. H. N.; Verboom, W.; Abu El-Fadl, A.; Harkema,
S.; Reinhoudt, D. N. J. Org. Chem. 1989, 54, 199. (d) Nijhuis, W. H. N.;
Verboom, W.; Abu El-Fadl, A.; Van Hummel, G. J.; Reinhoudt, D. N. J.
Org. Chem. 1989, 54, 209. (e) De Boeck, B.; Jiang, S.; Janousek, Z.; Viehe,
H. G. Tetrahedron 1994, 50, 7075. (f) De Boeck, B.; Janousek, Z.; Viehe,
H. G. Tetrahedron 1995, 51, 13239. (g) Ojea, V.; Muinelo, I.; Quintela,
J. M. Tetrahedron 1998, 54, 927. (h) Kaval, N.; Halasz-Dajka, B.; Vo-
Thanh, G.; Dehaen, W.; Van der Eycken, J.; Matyus, P.; Loupy, A.; Van
der Eycken, E. Tetrahedron 2005, 61, 9052. (i) Ruble, J. C.; Hurd, A. R.;
Johnson, T. A.; Sherry, D. A.; Barbachyn, M. R.; Toogood, P. L.; Bundy,
G. L.; Graber, D. R.; Kamilar, G. M. J. Am. Chem. Soc. 2009, 131, 3991.
(8) (a) Zhang, C.; De, C. K.; Mal, R.; Seidel, D. J. Am. Chem. Soc. 2008, 130,
416. (b) Zhang, C.; Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419.
(c) Murarka, S.; Zhang, C.; Konieczynska, M. D.; Seidel, D. Org. Lett.
2009, 11, 129.
Figure 1. Proposed transition state leading to major diastereomer. Absolute
configuration of 5b (X-ray).
proposed trigonal bipyramidal coordination geometry for the magne-
sium DBFox complex has previously been suggested by Kanemasa
et al.12d
The absolute configuration of the minor diastereomer 5a′ was
determined as outlined in eq 4. Upon exposure to DBU, partial
equilibration to the major diastereomer 5a with slight erosion of ee
was observed. Compound 5a was recovered as the same enantiomer
(R,R) that is formed in the catalytic reaction as revealed by HPLC
correlation.11 This established the absolute configuration of 5a′ as
shown.14
(9) A single nitro group has been shown to be sufficient for activation under
thermal conditions:Rabong, C.; Hametner, C.; Mereiter, K.; Kartsev, V. G.;
Jordis, U. Heterocycles 2008, 75, 799.
(10) For examples of using acyl oxazolidinones as achiral templates, see:(a)
Narasaka, K.; Inoue, M.; Okada, N. Chem. Lett. 1986, 1109. (b) Johnson,
J. S.; Evans, D. A. Acc. Chem. Res. 2000, 33, 325. (c) Evans, D. A.; Scheidt,
K. A.; Johnston, J. N.; Willis, M. C. J. Am. Chem. Soc. 2001, 123, 4480.
(d) Desimoni, G.; Faita, G.; Jorgensen, K. A. Chem. ReV. 2006, 106, 3561.
(e) Reymond, S.; Cossy, J. Chem. ReV. 2008, 108, 5359.
(11) See the Supporting Information for details.
(12) (a) Kanemasa, S.; Oderaotoshi, Y.; Yamamoto, H.; Tanaka, J.; Wada, E.;
Curran, D. P. J. Org. Chem. 1997, 62, 6454. (b) Kanemasa, S.; Oderaotoshi,
Y.; Sakaguchi, S.-i.; Yamamoto, H.; Tanaka, J.; Wada, E.; Curran, D. P.
J. Am. Chem. Soc. 1998, 120, 3074. (c) Iserloh, U.; Curran, D. P.;
Kanemasa, S. Tetrahedron: Asymmetry 1999, 10, 2417. (d) Kanemasa, S.;
Kanai, T. J. Am. Chem. Soc. 2000, 122, 10710.
(13) Reactions performed in toluene, trifluorotoluene, chloroform, dichlo-
romethane, or acetonitrile (all at reflux temperature) led to no formation of
product.
(14) For additional experiments regarding the interconversion between 5a and
5a′ under the reaction conditions, see the Supporting Information.
In summary, we have described the first example of a catalytic
enantioselective hydride shift/ring closure reaction cascade. Ring-fused
tetrahydroquinolines are obtained in good yields and with high levels
of enantioselectivity. It is anticipated that this communication will set
the stage for a variety of other catalytic enantioselective processes
involving hydride shift triggered reaction cascades.
JA905213F
9
J. AM. CHEM. SOC. VOL. 131, NO. 37, 2009 13227