5084
J.-Y. Winum et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5082–5085
hCA IX inhibitor was the tetrafluorophenylsulfamate 11 (KI
References and notes
of 2.8 nM), whereas several other compounds (e.g., 2, 3, 5,
6, and 7) showed KIs <10 nM, thus being very effective hCA
IX inhibitors (better than the clinically used AAZ and DZA,
which possess inhibition constants of 25–52 nM against this
isozyme). Again the least effective inhibitor was the penta-
fluorophenyl derivative 12 (KI of 47 nM), as for hCA I and
II. The difference of hCA IX inhibitory activity between the
tetra- and pentafluorophenyl derivatives 11 and 12 is 16.8,
which is probably the highest one evidenced so far for two
compounds from a congeneric series differing by only one
atom. It is indeed really puzzling to explain this phenome-
non but in the absence of X-ray crystal structures this is
virtually impossible. The remaining derivatives (4 and 8–
10) showed a compact behavior of strong hCA IX inhibitors,
with inhibition constants of 11–21 nM (Table 1).
1. (a) Winum, J.-Y.; Vullo, D.; Casini, A.; Montero, J.-L.; Scozzafava, A.; Supuran, C.
T. J. Med. Chem. 2003, 46, 2197; (b) Winum, J.-Y.; Vullo, D.; Casini, A.; Montero,
J.-L.; Scozzafava, A.; Supuran, C. T. J. Med. Chem. 2003, 46, 5471.
2. Winum, J.-Y.; Pastorekova, S.; Jakubickova, L.; Montero, J.-L.; Scozzafava, A.;
Pastorek, J.; Vullo, D.; Innocenti, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2005,
15, 579.
3. (a) Winum, J.-Y.; Scozzafava, A.; Montero, J.-L.; Supuran, C. T. Med. Res. Rev.
2005, 25, 186; (b) Winum, J.-Y.; Scozzafava, A.; Montero, J.-L.; Supuran, C. T.
Expert Opin. Ther. Patents 2004, 14, 1273.
4. Supuran, C. T. Nat. Rev. Drug Disc. 2008, 7, 168.
5. (a) Supuran, C. T.; Scozzafava, A.; Conway, J. Carbonic Anhydrase—Its Inhibitors
and Activators; CRC Press: Boca Raton, New York, London, 2004; (b) Supuran, C.
T.; Scozzafava, A.; Casini, A. Development of Sulfonamide Carbonic Anhydrase
Inhibitors. In Carbonic Anhydrase—Its Inhibitors and Activators; Supuran, C. T.,
Scozzafava, A., Conway, J., Eds.; CRC Press: Boca Raton, 2004; pp 67–147.
6. Supuran, C. T. Carbonic Anhydrases as Drug Targets—General Presentation. In
Drug Design of Zinc-Enzyme Inhibitors: Functional, Structural, and Disease
Applications; Supuran, C. T., Winum, J. Y., Eds.; Wiley: Hoboken, 2009; pp 15–
38.
(iv) hCA XII was also moderately inhibited by the lead Ph-
OSO2NH2 (KI of 56 nM) and was much better inhibited by
the fluorinated compounds 2–12 (KIs in the range of 1.9–
35 nM). Thus there is a close parallelism between the inhibi-
tion of hCA XII and IX with this class of inhibitors. Indeed,
the best hCA XII inhibitor was again the tetra-
fluorophenylsulfamate 11 (KI of 1.9 nM) whereas the least
effective one was the pentafluorophenylsulfamate 12 (KI of
35 nM). Compounds 2, 3, 5–7, and 10 also showed highly
effective hCA XII inhibitory properties (KIs in the range of
3.9–7.4 nM), whereas 4, 8, and 9 were slightly less effective
(KIs of 8.1–14 nM). Thus, most of these compounds showed
very strong hCA XII inhibition, similarly to the clinically used
drugs AAZ and DZA.
7. (a) Supuran, C. T. Curr. Pharm. Des. 2008, 14, 641; (b) Temperini, C.; Cecchi, A.;
Scozzafava, A.; Supuran, C. T. Bioorg. Med. Chem. Lett. 2008, 18, 2567.
8. Köhler, K.; Hillebrecht, A.; Schulze Wischeler, J.; Innocenti, A.; Heine, A.;
Supuran, C. T.; Klebe, G. Angew. Chem., Int. Ed. 2007, 46, 7697–7699.
9. (a) Pastorekova, S.; Parkkila, S.; Pastorek, J.; Supuran, C. T. J. Enzyme Inhib. Med.
Chem. 2004, 19, 199; (b) Thiry, A.; Dogné, J. M.; Masereel, B.; Supuran, C. T.
Trends Pharmacol. Sci. 2006, 27, 566; (c) Clare, B. W.; Supuran, C. T. Eur. J. Med.
Chem. 1999, 34, 463.
10. (a) Scozzafava, A.; Mastrolorenzo, A.; Supuran, C. T. Expert Opin. Ther. Patents
2004, 14, 667; (b) Winum, J. Y.; Montero, J. L.; Scozzafava, A.; Supuran, C. T.
Mini-Rev. Med. Chem. 2006, 6, 921–936; (c) Supuran, C. T. Expert Opin. Ther.
Patents 2003, 13, 1545; (d) Borras, J.; Scozzafava, A.; Menabuoni, L.; Mincione,
F.; Briganti, F.; Mincione, G.; Supuran, C. T. Bioorg. Med. Chem. 1999, 7, 2397.
11. (a) Krishnamurthy, V. M.; Kaufman, G. K.; Urbach, A. R.; Gitlin, I.; Gudiksen, K.
L.; Weibel, D. B.; Whitesides, G. M. Chem. Rev. 2008, 108, 946; (b) Stiti, M.;
Cecchi, A.; Rami, M.; Abdaoui, M.; Barragan-Montero, V.; Scozzafava, A.; Guari,
Y.; Winum, J. Y.; Supuran, C. T. J. Am. Chem. Soc. 2008, 130, 16130.
12. (a) Thiry, A.; Dogné, J. M.; Supuran, C. T.; Masereel, B. Curr. Pharm. Des. 2008, 14,
661; (b) Supuran, C. T.; Scozzafava, A. J. Enzyme Inhib. 1997, 12, 37.
13. (a) Supuran, C. T.; Di Fiore, A.; De Simone, G. Expert Opin. Emerg. Drugs 2008, 13,
383; (b) De Simone, G.; Di Fiore, A.; Supuran, C. T. Curr. Pharm. Des. 2008, 14,
655.
14. (a) Alterio, V.; Vitale, R. M.; Monti, S. M.; Pedone, C.; Scozzafava, A.; Cecchi, A.;
De Simone, G.; Supuran, C. T. J. Am. Chem. Soc. 2006, 128, 8329; (b) Dubois, L.;
Douma, K.; Supuran, C. T.; Chiu, R. K.; van Zandvoort, M. A. M. J.; Pastorekova,
S.; Scozzafava, A.; Wouters, B. G.; Lambin, P. Radiother. Oncol. 2007, 83, 367.
15. (a) Hilvo, M.; Baranauskiene, L.; Salzano, A. M.; Scaloni, A.; Matulis, D.;
Innocenti, A.; Scozzafava, A.; Monti, S. M.; Di Fiore, A.; De Simone, G.; Lindfors,
M.; Janis, J.; Valjakka, J.; Pastorekova, S.; Pastorek, J.; Kulomaa, M. S.; Nordlund,
H. R.; Supuran, C. T.; Parkkila, S. J. Biol. Chem. 2008, 283, 27799; (b) Chiche, J.;
Ilc, K.; Laferrière, J.; Trottier, E.; Dayan, F.; Mazure, N. M.; Brahimi-Horn, M. C.;
Pouysségur, J. Cancer Res. 2009, 69, 358.
(v) Many of the effective CA IX inhibitors reported so far1-5 have
as the main drawback the lack of selectivity for inhibiting
the tumor-associated isozyme (CA IX) over the cytosolic,
ubiquitous one CA II. Data in Table 1 show, for example, that
the selectivity ratios CA IX/CA II for the two clinically used,
standard drugs AAZ and DZA are in the range of 0.17–0.48,
thus the two sulfonamides being much better CA II inhibitors
than CA IX inhibitors. The same is true for the lead compound,
for which this ratio is even less favorable (i.e., of 0.02). How-
ever, many of the fluorinated sulfamates reported here show
selectivity ratios >2.5 for inhibiting CA IX over CA II. Thus,
the most CA IX-selective inhibitors were the monofluorophe-
nyl derivative 2 and the tetrafluoro-substituted one 11 (selec-
tivity ratios of 11.38–12.52), whereas the remaining
derivatives had this parameter in the range of 1.66–3.62.
16. (a) Brahimi-Horn, M. C.; Pouysségur, J. Essays Biochem. 2007, 43, 165; (b) Stock,
C.; Schwab, A. Pflugers Arch., in press.
17. (a) Ebbesen, P.; Pettersen, E. O.; Gorr, T. A.; Jobst, G.; Williams, K.; Kienninger,
J.; Wenger, R. H.; Pastorekova, S.; Dubois, L.; Lambin, P.; Wouters, B. G.;
Supuran, C. T.; Poellinger, L.; Ratcliffe, P.; Kanopka, A.; Görlach, A.; Gasmann,
M.; Harris, A. L.; Maxwell, P.; Scozzafava, A. J. Enzyme Inhib. Med. Chem. 2009,
24, 1; (b) Swietach, P.; Wigfield, S.; Cobden, P.; Supuran, C. T.; Harris, A. L.;
Vaughan-Jones, R. D. J. Biol. Chem. 2008, 283, 20473; (c) Swietach, P.; Patiar, D.;
Supuran, C.T.; Harris, A.L.; Vaughan-Jones, R.D. J. Biol. Chem., 284, in press.
18. (a) Svastova, E.; Hulikova, A.; Rafajova, M.; Zat’ovicova, M.; Gibadulinova, A.;
Casini, A.; Cecchi, A.; Scozzafava, A.; Supuran, C. T.; Pastorek, J.; Pastorekova, S.
FEBS Lett. 2004, 577, 439; (b) Cecchi, A.; Hulikova, A.; Pastorek, J.; Pastorekova,
S.; Scozzafava, A.; Winum, J. Y.; Montero, J. L.; Supuran, C. T. J. Med. Chem. 2005,
48, 4834.
In conclusion, we report here a series of simple fluorinated
phenylsulfamates which have been investigated for the inhibition
of four physiologically relevant CA isozymes, the cytosolic CA I
and II (off-targets) and the transmembrane, tumor-associated CA
IX and XII. Unlike the lead molecule (phenylsulfamate), a very
potent CA I and II inhibitor and a modest CA IX/XII inhibitor, the
fluorinated sulfamates act as stronger inhibitors of CA IX (KIs of
2.8–47 nM) and CA XII (KIs of 1.9–35 nM) than of CA I (KIs of 53–
415 nM) and CA II (KIs of 20–113 nM). Some of these compounds
are selective CA IX inhibitors over CA II inhibitors, with selectivity
ratios in the range of 11.4–12.1, making them interesting candi-
dates for targeting hypoxic tumors overexpressing CA IX and/or
XII.
19. 4-Fluorophenylsulfamate 2: mp 78–80 °C; 1H NMR (DMSO-d6, 400 MHz) d 8.01
(s, 2H), 7.32 (s, 2H), 7.3 (d, 2H, J = 2.8 Hz); 2,6-difluorophenylsulfamate 4: mp
99–101 °C; 1H NMR (DMSO-d6, 400 MHz) d 8.42 (s, 2H), 7.39 (m, 1H), 7.27 (m,
2H); 2,4-difluorophenylsulfamate 5: mp 83–85 °C; 1H NMR (DMSO-d6,
400 MHz)
d
8.26 (s, 2H), 7.49 (m, 2H), 7.16 (m, 1H); 3,5-
difluorophenylsulfamate 6: mp 68–70 °C; 1H NMR (DMSO-d6, 400 MHz) d
8.25 (s, 2H), 7.30 (m, 1H), 7.08 (m, 2H); 3,4-difluorophenylsulfamate 7: mp 69–
72 °C; 1H NMR (DMSO-d6, 400 MHz) d 8.12 (s, 2H), 7.32 (s, 2H), 7.56 (m, 1H),
7.42 (m, 1H), 7.16 (m, 1H); 2,3,4-trifluorophenylsulfamate 9: mp 70–72 °C; 1H
NMR (DMSO-d6, 400 MHz) d 8.50 (s, 2H), 7.57 (m, 1H), 7.43 (m, 1H); 3,4,6-
trifluorophenylsulfamate 10: mp 86–88 °C; 1H NMR (DMSO-d6, 400 MHz) d
8.46 (s, 2H), 7.41 (t, 2H, J = 9.2 Hz), 7.3 (d, 2H, J = 2.8 Hz); 2,3,5,6-
tetrafluorophenylsulfamate 11: mp 68–70 °C; 1H NMR (DMSO-d6, 400 MHz)
d 8.97 (s, 2H), 7.21 (m, 1H); pentafluorophenylsulfamate 12: mp 104À106 °C;
1H NMR (DMSO-d6, 250 MHz) 9.2 (s, 2H); 13C NMR (DMSO-d6, 400 MHz) d
138.3, 136, 133.6, 131.6; IR (KBr) 3381, 3305, 3094, 1527, 1370, 1223,
1141 cmÀ1; MS m/z 262 (MÀH)À.
Acknowledgments
This research was financed in part by a grant of the 6th Frame-
work Programme (FP) of the European Union (DeZnIT project), and
by a grant of the 7th FP of EU (Metoxia project).