Journal of the American Chemical Society
Communication
Scheme 7. Mechanistic Studies
ACKNOWLEDGMENTS
We thank Indiana University and the NIH (5R01GM114443)
for generous financial support.
■
REFERENCES
■
(1) Morais, A. R. C.; Dworakowska, S.; Reis, A.; Gouveia, L.; Matos, C.
T.; Bogdał, D.; Bogel-Łukasik, R. Catal. Today 2015, 239, 38.
(2) For selected recent examples, see: (a) Schmitt, D. C.; Lee, J.;
Dechert-Schmitt, A.-M. R.; Yamaguchi, E.; Krische, M. J. Chem.
Commun. 2013, 49, 6096. (b) Parker, S. E.; Borgel, J.; Ritter, T. J. Am.
̈
Chem. Soc. 2014, 136, 4857. (c) Timsina, Y. N.; Sharma, R. K.;
RajanBabu, T. V. Chem. Sci. 2015, 6, 3994.
(3) Corey, E. J. Angew. Chem., Int. Ed. 2009, 48, 2100.
(4) Cho, H. Y.; Morken, J. P. Chem. Soc. Rev. 2014, 43, 4368.
(5) For selected examples, see: (a) Obora, Y.; Tsuji, Y.; Kawamura, T. J.
Am. Chem. Soc. 1995, 117, 9814. (b) Ishiyama, T.; Yamamoto, M.;
Miyaura, N. Chem. Commun. 1996, 2073. (c) Cho, H. Y.; Morken, J. P. J.
Am. Chem. Soc. 2008, 130, 16140. (d) Geary, L. M.; Glasspoole, B. W.;
Kim, M. M.; Krische, M. J. J. Am. Chem. Soc. 2013, 135, 3796.
(e) McCammant, M. S.; Sigman, M. S. Chem. Sci. 2015, 6, 1355.
(6) (a) Smith, K. B.; Logan, K. M.; You, W.; Brown, M. K. Chem. - Eur.
J. 2014, 20, 12032. (b) Logan, K. M.; Smith, K. B.; Brown, M. K. Angew.
Chem., Int. Ed. 2015, 54, 5228. (c) Logan, K. M.; Brown, M. K. Angew.
Chem., Int. Ed. 2017, 56, 851.
(7) For reviews regarding carboboration reactions, see: (a) Shimizu, Y.;
Kanai, M. Tetrahedron Lett. 2014, 55, 3727. (b) Semba, K.; Fujihara, T.;
Terao, J.; Tsuji, Y. Tetrahedron 2015, 71, 2183. (c) Lazreg, F.; Nahra, F.;
Cazin, C. S. J. Coord. Chem. Rev. 2015, 293−294, 48. (d) Neeve, E. C.;
Geier, S. J.; Mkhalid, I. A. I.; Westcott, S. A.; Marder, T. B. Chem. Rev.
2016, 116, 9091.
(8) For selected recent examples of Cu-catalyzed carboboration, see:
(a) Li, X.; Meng, F.; Torker, S.; Shi, Y.; Hoveyda, A. H. Angew. Chem.,
Int. Ed. 2016, 55, 9997. (b) Semba, K.; Ohtagaki, Y.; Nakao, Y. Org. Lett.
2016, 18, 3956. (c) Yeung, K.; Ruscoe, R. E.; Rae, J.; Pulis, A. P.; Procter,
D. J. Angew. Chem., Int. Ed. 2016, 55, 11912. (d) Zhao, W.; Montgomery,
J. J. Am. Chem. Soc. 2016, 138, 9763. (e) Jiang, L.; Cao, P.; Wang, M.;
Chen, B.; Wang, B.; Liao, J. Angew. Chem., Int. Ed. 2016, 55, 13854.
(9) Semba, K.; Nakao, Y. J. Am. Chem. Soc. 2014, 136, 7567.
(10) Jia, T.; Cao, P.; Wang, B.; Lou, Y.; Yin, X.; Wang, M.; Liao, J. J. Am.
Chem. Soc. 2015, 137, 13760.
7A).17 In addition, a protoboration experiment in the presence of
DMAP (Scheme 7B) also resulted in the exclusive formation of
46. This data suggests that 43 was generated under the 2,1-
arylboration reaction conditions; however, its potential role as a
catalytic intermediate on the pathway to product 9 remains
unclear. Altogether, it is evident that the mechanisms of the both
1,4- and 2,1-arylboration reactions are quite complex and further
investigations are in progress.
Finally, for formation of Z-crotyl metal Cu complexes 43 and
44, two possibilities are proposed: (1) it has been established that
Z-crotyl metal complexes are more stable relative to the E-crotyl
metal complexes,19 and (2) insertion of 1,3-dienes into organo-
metal bonds occurs preferentially in the s-cis conformation to
give rise to Z-crotyl metal complexes.20
(11) η3 complexes and alkene isomers are not shown for clarity. The
isomeric C2 and C3 complexes are not considered, as Cu(I)-allyl
complexes typically prefer the least substituted position. (a) Russo, V.;
Herron, J. R.; Ball, Z. T. Org. Lett. 2010, 12, 220. (b) Also see ref 8e.
(12) Shelby, Q.; Kataoka, N.; Mann, G.; Hartwig, J. J. Am. Chem. Soc.
2000, 122, 10718.
(13) Sandford, C.; Aggarwal, V. K. Chem. Commun. 2017, 53, 5481.
(14) Xie, A.; Stahl, S. S. J. Am. Chem. Soc. 2015, 137, 3767.
(15) (a) Kulkarni, M. G.; Rasne, R. M.; Davawala, S. I.; Doke, A. K.
Tetrahedron Lett. 2002, 43, 2297. (b) Wu, X.; Chen, Z.; Bai, Y.-B.; Dong,
V. M. J. Am. Chem. Soc. 2016, 138, 12013.
In conclusion, a process for the regioselective arylboration of
isoprene and its derivatives is presented. DMAP has been shown
to alter the normal reactivity of the system. Future efforts aim to
further investigate the role of DMAP and develop enantiose-
lective variants.
(16) Diene 34 did not lead to arylboration products under conditions
outlined in Scheme 2.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
(18) Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. -
Eur. J. 2013, 19, 7125.
(19) (a) Bates, R. B.; Beavers, W. A. J. Am. Chem. Soc. 1974, 96, 5001.
(b) Schleyer, P. v. R.; Kaneti, J.; Wu, Y. D.; Chandrasekhar, J. J.
Organomet. Chem. 1992, 426, 143. (c) Liepins, V.; Backvall, J. E. Eur. J.
■
S
Experimental procedures and analytical data (PDF)
̈
Org. Chem. 2002, 2002, 3527.
(20) For a seminal report, see: Ojima, I.; Kumagai, M. J. Organomet.
Chem. 1978, 157, 359.
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
The authors declare no competing financial interest.
7724
J. Am. Chem. Soc. 2017, 139, 7721−7724