a1-d1 umpolung of aldehydes,9 a3-d3 umpolung of R,ꢀ-
unsaturated aldehydes,10 umpolung of Michael acceptors,11
aza-Mortia-Baylis-Hillman reaction,12 and addition of
silylated nucleophiles.13 The synthesis of γ-trifuoromethyl
γ-butyrolactones via NHC-catalyzed annulation of enals and
ketones was reported by Glorius et al. and You et al.14
Interestingly, Glorius et al. obsevered that, under certain
reaction conditions, the corresponding ꢀ-lactones could be
formed albeit in quite low yields and diastereoselectivities.15
Table 1. Optimization of Conditions for the NHC-Catalyzed
Ketene-Ketone Cycloaddition Reactiona
yield
ee
Recently, the NHC-catalyzed enantioselective cycloaddition
of ketenes and imines, 2-oxoaldehydes, enones, and N-ben-
zoyldiazenes to give ꢀ-lactams, ꢀ-lactones, δ-lactones, and
oxadiazinones, respectively, have been accomplished by Smith’s
and our group.16 These findings prompted us to explore the
asymmetric synthesis of ꢀ-trifluoromethyl-ꢀ-lactones via NHC-
catalyzed ketene-ketone cycloaddition reactions.
entry catalyst
conditions
toluene, rt
(%)b trans:cisc (%)d
1
2
3
4
5
6
4a
4b
4c
4d
4e
4f
16
47
42
57
5:1
5:1
5:1
5:1
77
86
86
89
toluene, rt
toluene, rt
toluene, rt
toluene, rt
toluene, rt
toluene, rt
toluene, rt
toluene, rt
toluene, rt
benzene, rt
ether, rt
THF, rt
CH2Cl2, rt
toluene/ether (1:1), rt 50
toluene, 0 °C
toluene, -20 °C
toluene, -40 °C
toluene, -78 °C
toluene, -40 °C
toluene, -40 °C
trace
10
1:1
73
7
8
9
4g
4h
5
trace
trace
trace
trace
52
43
42
41
Initially, a series of NHC precurors 4a-h (Figure 1), derived
from L-pyroglutamic acid,16a were tested for the [2 + 2]
10
11
12
13
14
15
16
17
18
19
20
21
6
4d
4d
4d
4d
4d
4d
4d
4d
4d
4de
4df
5:1
4:1
3:1
2:1
4:1
5:1
6:1
6:1
89
88
88
85
87
92
96
97
64
65
81
NR
71
17
6:1
6:1
97
97
a NHCs were prepared freshly from precursors 4-6 (12 mol %) in the
presence of Cs2CO3 (10 mol %) at rt for 1 h. b Isolated yields. c Determined
by H NMR (300 MHz) and/or GC. d ee of trans-3a, determined by GC.
1
e 4d (6 mol %) and Cs2CO3 (5 mol %) were employed. f 4d (1.2 mol %)
Figure 1. Structure of NHC precursors.
and Cs2CO3 (1 mol %) were employed.
yl-ꢀ-lactone 3a bearing two contiguous stereocenters with good
diastereoselectivity and enantioselectivity albeit in only 16%
yield (entry 1). Better yield and enantioselectivity were observed
when precatalyst 4b, bearing a bulkier tert-butyldimethylsilyl
group, was employed (entry 2). Further optimizations were
carried out by installing an electron-donating group in the N-aryl
group of the NHCs in order to increase the nucleophilicity of
cycloaddition reaction of ethyl(phenyl)ketene (1a) and triflu-
oromethyl ketone 2a (Table 1). It was found that NHC4a′,17
generated freshly from its precursor 4a and Cs2CO3,18 could
catalyze the reaction to give the corresponding ꢀ-trifluorometh-
(6) For the enantioselective synthesis of ꢀ-lactones via [2 + 2]
cycloaddition of ketenes and aldehydes, see: (a) Wynberg, H.; Staring,
E. G. J. J. Am. Chem. Soc. 1982, 104, 166. (b) Nelson, S. G.; Peelen, T. J.;
Wan, Z. J. Am. Chem. Soc. 1999, 121, 9742. (c) Cortez, G. S.; Tennyson,
R. L.; Romo, D. J. Am. Chem. Soc. 2001, 123, 7945. (d) Evans, D. A.;
Janey, J. M. Org. Lett. 2001, 3, 2125. (e) Calter, M. A.; Tretyak, O. A.;
Flaschenriem, C. Org. Lett. 2005, 7, 1809. (f) Wilson, J. E.; Fu, G. C. Angew.
Chem., Int. Ed. 2004, 43, 6358. (g) Gnandesikan, V.; Corey, E. J. Org.
Lett. 2006, 8, 4943.
(11) Fischer, C.; Smith, S. W.; Powell, D. A.; Fu, G. C. J. Am. Chem.
Soc. 2006, 128, 1472.
(12) He, L.; Jian, T.-Y.; Ye, S. J. Org. Chem. 2007, 72, 7466.
(13) (a) Song, J. J.; Tan, Z.; Reeves, J. T.; Gallou, F.; Yee, N. K.;
Senanayake, C. H. Org. Lett. 2005, 7, 2193. (b) Wu, J.; Sun, X.; Ye, S.;
Sun, W. Tetrahedron Lett. 2006, 47, 4813.
(7) Linn, W. J. U.S. Patent 3,271,419, Sept. 6, 1966.
(14) (a) Hirano, K.; Piel, I.; Glorius, F. AdV. Synth. Catal. 2008, 350,
984. (b) Li, Y.; Zhao, Z.-A.; He, H.; You, S.-L. AdV. Synth. Catal. 2008,
350, 1885. (c) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43,
6205.
(8) For reviews of NHC-catalyzed reactions, see: (a) Enders, D.;
Niemeier, O.; Henseler, A. Chem. ReV. 2007, 107, 5606. (b) Marion, N.;
D´ıez-Gonza´lez, S.; Nolan, S. P. Angew. Chem., Int. Ed. 2007, 46, 2988.
(c) Zeitler, K. Angew. Chem., Int. Ed. 2005, 44, 7506. (d) Enders, D.;
Balensiefer, T. Acc. Chem. Res. 2004, 37, 534.
(15) Burstein, C.; Tschan, S.; Xie, X.; Glorius, F. Synthesis 2006, 2418.
(16) (a) Zhang, Y.-R.; He, L.; Wu, X.; Shao, P.-L.; Ye, S. Org. Lett.
2008, 10, 277. (b) Duguet, N.; Campbell, C. D.; Slawin, A. M. Z.; Smith,
A. D. Org. Biomol. Chem. 2008, 6, 1108. (c) He, L.; Lv, H.; Zhang, Y.-R.;
Ye, S. J. Org. Chem. 2008, 73, 8101. (d) Zhang, Y.-R.; Lv, H.; Zhou, D.;
Ye, S. Chem.sEur. J. 2008, 14, 8473. (e) Huang, X.-L.; He, L.; Shao,
P.-L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192.
(9) (a) Sheehan, J.; Hunneman, D. H. J. Am. Chem. Soc. 1966, 88, 3666.
(b) Enders, D.; Breuer, K.; Teles, J. H. HelV. Chim. Acta 1996, 79, 1217.
(c) Murry, J. A.; Frantz, D. E.; Soheili, A.; Tillyer, R.; Grabowski, E. J. J.;
Reider, P. J. J. Am. Chem. Soc. 2001, 123, 9696. (d) Li, G.-Q.; Dai, L.-X.;
You, S.-L. Chem. Commun. 2007, 852. (d) Stetter, H. Angew. Chem., Int.
Ed. 1976, 15, 639. (e) Enders, D.; Han, J.; Henseler, A. Chem. Commun.
2008, 3989.
(17) For convenience, the corresponding NHCs prepared from the
precursors 4a-h were denoted as NHCs 4a′-h′.
(18) It was found that Cs2CO3 alone could promote the reaction. Thus
a little excess of NHC precursor was used to make the full consumption of
the base of Cs2CO3.
(10) (a) Burstein, C.; Glorius, F. Angew. Chem., Int. Ed. 2004, 43, 6205.
(b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126,
14370. (c) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905.
4030
Org. Lett., Vol. 11, No. 18, 2009