6468
J.D. Sunderhaus et al. / Tetrahedron 65 (2009) 6454–6469
organic layers were dried (MgSO4), filtered, and concentrated un-
der reduced pressure. The residue was dissolved in toluene (35 mL)
and heated under reflux for 18 h. The mixture was cooled to room
temperature and concentrated under reduced pressure. The residue
was purified by flash chromatography, eluting with 75–100% Et2O/
hexanes followed by EtOAc, to give 139.2 mg (49%) of amide 71 as
mass spectrum (CI) m/z 338.1026 [C19H16NO5 (Mþ1) requires
338.1028].
Acknowledgements
a dark yellowish oil. 1H NMR (500 MHz, CDCl3)
d 9.90 (s, 1H), 6.41
We thank the National Institutes of Health (GM 25439 and GM
86192), the Robert A. Welch Foundation (F-0652), The Texas In-
stitute for Drug and Diagnostic Development, and Welch Founda-
tion Grant #H-F-0032, Merck Research Laboratories, and
Boehringer Ingelheim Pharmaceuticals for their generous support
of this research. We are also grateful to Dr. Richard Pederson
(Materia, Inc.) for providing metathesis catalysts used in these
studies. We additionally thank Dr. Vincent Lynch (The University of
Texas) for X-ray crystallography data and Dr. James Sahn and Dr.
Jotham Coe (Pfizer Laboratories) for other assistance and helpful
discussions.
(d, J¼5.9 Hz, 1H), 6.27 (d, J¼5.9 Hz, 1H), 5.73 (dddd, J¼17.0, 10.3, 5.9,
5.9 Hz, 1H), 5.25 (d, J¼17.0 Hz), 5.21 (d, J¼10.3 Hz, 1H), 5.06 (d,
J¼3.9 Hz, 1H), 4.34 (t, J¼6.1 Hz, 1H), 4.27 (dd, J¼15.9, 4.0 Hz, 1H),
3.61 (dd, J¼15.9, 6.5 Hz, 1H), 2.96 (d, J¼6.1 Hz, 2H), 2.53 (dd, J¼8.8,
3.9 Hz, 1H), 2.20 (d, J¼11.7 Hz, 1H), 1.60 (dd, J¼11.7, 8.8 Hz, 1H); 13C
NMR (100 MHz, CDCl3)
d 198.4, 174.0, 137.5, 132.1, 131.4, 118.1, 92.0,
79.0, 54.5, 45.9, 44.4, 43.9, 28.3; IR (neat) 2951, 2735, 1721, 1688,
1440, 1348, 1253, 1045, 946, 700 cmꢂ1; mass spectrum (CI) m/z
234.1131 [C13H15NO3 (Mþ1) requires 234.1130].
4.2.40. N-[1,2-Bis(3,4-ethylenedioxyphenyl)ethyl]-2,2-diacetoxy-
N-methylacetamide (73)
References and notes
A solution of methylamine (w1.9 M in THF, 0.5 mL, 0.95 mmol)
was added to a mixture of piperonal (72) (0.92 mg, 0.61 mmol) in
THF (1 mL) containing activated 3 Å molecular sieves (8–12 mesh,
w750 mg), and the mixture was stirred for 18 h. In a separate
flask, a solution of piperonyl chloride53 (728 mg, 4.27 mmol) in
THF (6 mL) was added dropwise over 2 h to a suspension of
magnesium turnings (170 mg) in THF (2.5 mL) at 0 ꢁC, and the
mixture was stirred for 3 h at 0 ꢁC. A solution of the Grignard re-
agent (75) thus prepared (0.4 M in THF, 3.5 mL, 1.40 mmol) was
added, and the reaction mixture was heated under reflux for 20 h.
The mixture was cooled to ꢂ78 ꢁC, and diacetoxyacetyl chloride
(76)47 (358 mg, 1.83 mmol) was added. The mixture was stirred for
2.5 h at ꢂ78 ꢁC. The cold bath was removed, and the mixture was
partitioned between CH2Cl2 (5 mL) and saturated NaHCO3 (5 mL).
The organic phase was removed, and the aqueous layer was
washed with CH2Cl2 (3ꢃ4 mL). The combined organic layers were
dried (MgSO4), filtered, and concentrated under reduced pressure.
The residue was purified by flash chromatography, eluting with
30% EtOAc/hexanes, to give 173 mg (61%) of amide 73 as a pale
1. (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893; (b)
Constantino, L.; Barlocco, D. Curr. Med. Chem. 2006, 13, 65.
2. See for example: (a) Strausberg, R. L.; Schreiber, S. L. Science 2003, 300, 294; (b)
Burke, M. D.; Schreiber, S. L. Angew. Chem., Int. Ed. 2004, 43, 46; (c) Arya, P.;
Joseph, R.; Gan, Z.; Rakic, B. Chem. Biol. 2005, 12, 163; (d) Tan, D. S. Nat. Chem.
Biol. 2005, 1, 74; (e) Spandl, R. J.; Bender, A.; Spring, D. R. Org. Biomol. Chem.
2008, 6, 1149.
3. For some recent applications of DOS strategies to identifying small molecules
with important bioactivities, see: antibiotic discovery: (a) Wyatt, E. E.; Gallo-
way, W. R. J. D.; Thomas, G. L.; Welch, M.; Loiseleur, O.; Plowright, A. T.; Spring,
D. R. Chem. Commun. 2008, 4962; (b) Thomas, G. L.; Spandl, R. J.; Glansdorp, F.
G.; Welch, W.; Bender, A.; Cockfield, J.; Lindsay, J. A.; Bryant, C.; Brown, D. F. J.;
Loiseleur, O.; Rudyk, H.; Ladlow, M.; Spring, D. R. Angew. Chem., Int. Ed. 2008, 47,
2808; (c) Inhibition of a protein-protein interaction in a cancer-related path-
way: Stanton, B. Z.; Peng, L. F.; Maloof, N.; Nakai, K.; Wang, X.; Duffner, J. L.;
Taveras, K. M.; Hyman, J. M.; Lee, S. W.; Koehler, A. N.; Chen, J. K.; Fox, J. L.;
Mandinova, A.; Schreiber, S. L. Nature Chem. Biol. 2009, 5, 154.
4. For some leading references, see: (a) Gaul, C.; Njardarson, J. T.; Shan, D.;
Dorn, D. C.; Wu, K.-D.; Tong, W. P.; Huang, X.-Y.; Moore, M. A. S.; Danishefsky,
S. J. J. Am. Chem. Soc. 2004, 126, 11326; (b) Wilson, R. M.; Danishefsky, S. J. J.
Org. Chem. 2006, 71, 8329; (c) Wilson, R. M.; Danishefsky, S. J. J. Org. Chem.
2007, 72, 4293.
5. For leading references, see: (a) Koch, M. A.; Schuffenhauer, A.; Scheck, M.;
Wetzel, S.; Casaulta, M.; Odermatt, A.; Ertl, P.; Waldmann, H. Proc. Natl. Acad.
Sci. U.S.A. 2005, 102, 17272; (b) Wetzel, S.; Schuffenhauer, A.; Roggo, S.; Ertl, P.;
Waldmann, H. Chimia 2007, 61, 355.
1
yellow solid, mp 141–143 ꢁC. H NMR (500 MHz, DMSO, 130 ꢁC)
d
6.95 (s, 1H), 6.88 (s, 1H), 6.84 (comp, 2H), 6.77 (d, J¼1.4 Hz, 1H),
6. Shaw, J. T. Nat. Prod. Rep. 2009, 26, 11.
7. For an excellent review of MCRs, see: Multicomponent Reactions; Zhu, J., Bien-
ayme, H., Eds.; Wiley-VCH: Wienheim, 2005.
8. For a recent mini-review, see: Sunderhaus, J. D.; Martin, S. F. Chem.dEur. J.
2009, 15, 1300.
9. For reviews, see: (a) Do¨mling, A. Chem. Rev. 2006, 106, 17; (b) Akritopoulou-
Zanze, I.; Djuric, S. W. Heterocycles 2007, 73, 125; See also: (c) Ribelin, T. P.;
Judd, A. S.; Akritopoulou-Zanze, I.; Henry, R. F.; Cross, J. L.; Whittern, D. N.;
Djuric, S. W. Org. Lett. 2007, 9, 5119.
6.74 (d, J¼7.9 Hz, 1H), 6.70 (dd, J¼7.9, 1.5 Hz, 1H), 5.97 (d, J¼1.5 Hz,
2H), 5.91 (s, 2H), 5.63 (br, 1H), 3.26 (dd, J¼14.3, 6.1 Hz, 1H), 3.10
(dd, J¼14.3, 9.5 Hz, 1H), 2.74 (s, 3H), 2.04 (s, 6H); 13C NMR
(125 MHz, DMSO, 130 ꢁC)
d 167.4, 167.3, 162.8, 147.0, 146.6, 146.1,
145.1, 132.1, 131.0, 121.2, 120.2, 108.4, 107.3, 107.3, 107.2, 100.3, 99.9,
83.9, 57.5, 35.0, 28.4, 19.3, 19.2; IR (neat) 1767, 1668, 1490, 1441,
1246, 1198, 1038, 924 cmꢂ1; mass spectrum (CI) m/z 458.1453
[C23H23NO9 (Mþ1) requires 458.1451].
10. (a) Gracias, V.; Gasiecki, A. F.; Djuric, S. W. Org. Lett. 2005, 7, 3183; (b) Gracias,
V.; Gasiecki, A. F.; Djuric, S. W. Tetrahedron Lett. 2005, 46, 9049; (c) Gracias, V.;
Darczak, D.; Gasiecki, A. F.; Djuric, S. W. Tetrahedron Lett. 2005, 46, 9053; (d)
Beebe, X.; Gracias, V.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 3225; (e) Gracias,
V.; Gasiecki, A. F.; Pagano, T. G.; Djuric, S. W. Tetrahedron Lett. 2006, 47, 8873.
11. Kumagai, N.; Muncipinto, G.; Schreiber, S. L. Angew. Chem., Int. Ed. 2006, 45,
3635.
12. (a) Nielsen, T. E.; Schreiber, S. L. Angew. Chem., Int. Ed. 2008, 47, 48; See also: (b)
Comer, E.; Rohan, E.; Deng, L.; Porco, J. A., Jr. Org. Lett. 2007, 9, 2123.
13. For some examples, see: (a) Martin, S. F.; Benage, B.; Geraci, L. S.; Hunter, J. E.;
Mortimore, M. J. Am. Chem. Soc. 1991, 113, 6161; (b) Martin, S. F.; Clark, C. C.;
Corbett, J. W. J. Org. Chem. 1995, 60, 3236; (c) Ito, M.; Clark, C. C.; Mortimore, M.;
Goh, J. B.; Martin, S. F. J. Am. Chem. Soc. 2001, 123, 8003.
14. For a review of the vinylogous Mannich reaction, see: (a) Martin, S. F. Acc. Chem.
Res. 2002, 35, 895; For other leading examples, see also: (b) Martin, S. F.; Barr,
K. J.; Smith, D. W.; Bur, S. K. J. Am. Chem. Soc. 1999, 121, 6990; (c) Martin, S. F.;
Chen, K. X.; Eary, C. T. Org. Lett. 1999, 1, 79; (d) Martin, S. F.; Lopez, O. D. Tet-
rahedron Lett. 1999, 40, 8949; (e) Martin, S. F.; Bur, S. K. Tetrahedron 1999, 55,
8905; (f) Liras, S.; Lynch, C. L.; Fryer, A. M.; Vu, B. T.; Martin, S. F. J. Am. Chem. Soc.
2001, 123, 5918; Reichelt, A.; Bur, S. K.; Martin, S. F. Tetrahedron 2002, 58, 6323.
15. For some related MCRs, see: (a) Black, D. A.; Arndtsen, B. A. Org. Lett. 2004, 6,
1107; (b) Fischer, C.; Carriera, E. M. Org. Lett. 2004, 6, 1497; (c) Davis, J. L.;
Dhawan, R.; Arndtsen, B. A. Angew. Chem., Int. Ed. 2004, 43, 590; (d) Black, D. A.;
Arndtsen, B. A. J. Org. Chem. 2005, 70, 5133; (e) Black, D. A.; Arndtsen, B. A.
Tetrahedron 2005, 61, 11317; (f) Wei, C.; Li, C.-J. Lett. Org. Chem. 2005, 2, 410; (g)
4.2.41. (ꢀ)-Roelactamine (74)
A solution of concentrated HCl/MeOH (2:1, 5 mL) was added to
amide 73, and the mixture was stirred for 8 h at room temperature.
The mixture was diluted with CH2Cl2 (5 mL) and carefully
quenched with 2 M Na2CO3 (10 mL) and saturated NaHCO3 (5 mL).
The organic phase was removed, and the aqueous layer was washed
with CH2Cl2 (3ꢃ5 mL). The combined organic layers were dried
(MgSO4), filtered, and concentrated under reduced pressure. The
residue was purified by flash chromatography, eluting with 40%
EtOAc/hexanes, to give 58 mg (68%) of 74 as a white foam. 1H NMR
(400 MHz, CDCl3) d 6.75 (s,1H), 6.73 (s, 1H), 6.69 (s,1H), 6.46 (s,1H),
5.93 (d, J¼1.4 Hz, 1H), 5.89 (d, J¼1.4 Hz, 1H), 5.87 (d, J¼1.4 Hz, 1H),
5.85 (d, J¼1.4 Hz, 1H), 4.39 (dd, J¼4.2, 2.6 Hz, 1H), 4.25 (s, 1H), 3.33
(dd, J¼17.3, 4.2 Hz, 1H), 3.10 (s, 3H), 2.95 (dd, J¼17.3, 2.6 Hz, 1H); 13C
NMR (100 MHz, CDCl3) d 173.6, 148.1, 148.0, 147.4, 147.0, 135.1, 130.3,
130.2, 127.0, 112.2, 110.0, 107.0, 106.3, 102.1, 101.9, 61.5, 57.4, 34.8,
33.3; IR (neat) 2895, 1661, 1504, 1482, 1228, 1038, 941, 873 cmꢂ1
;