10.1002/anie.201808794
Angewandte Chemie International Edition
COMMUNICATION
From the labelling studies we undertook with H218O (Scheme 4d),
we established that keteniminium species 15 is likely attacked by
either water or acetate released by the DMP, to give the
enamine/enol (acetate) hybrid 16.[28] Conceivably, reaction of 16
with 17 would generate an intermediate that leads to the product
4a (Scheme 4, pathway (i)). Upon replacing DMP with acetic
anhydride (Scheme 4b) we generated a mixture of 6 and 4a. This
further suggests that an electrophilic, oxidized selenium species
(likely the mixed anhydride) plays some role in the reaction but
also emphasizes that DMP is important, either to oxidise 6 to 4a,
or trap and re-oxidise species 18 and lower oxidation state
selenium species.[29] We speculate that the modest efficiency of
reaction 4(c) indicates the major role of the DMP to be as a
secondary oxidant of species 18 which avoids side reactions of
the keteniminium intermediate 15 with lower oxidation state
selenium species.
Shang, X. Jie, K. Jonnada, S. N. Zafar, W. Su, Nat. Commun. 2017, 8,
2273.
[12] a) K. C. Nicolaou, Y.-L. Zhong, P. S. Baran, J. Am. Chem. Soc. 2000,
122, 7596–7597; b) K. C. Nicolaou, T. Montagnon, P. S. Baran, Y.-L.
Zhong, J. Am. Chem. Soc. 2002, 124, 2245–2258; c) K. C. Nicolaou, D.
L. F. Gray, T. Montagnon, S. T. Harrison, Angew. Chem. Int. Ed. 2002,
41, 996–1000.
[13] a) Y. Chen, J. P. Romaire, T. R. Newhouse, J. Am. Chem. Soc. 2015,
137, 5875–5878; b) Y. Zhao, Y. Chen, T. R. Newhouse, Angew. Chem.
Int. Ed. 2017, 56, 13122–13125.
[14] Y. Chen, A. Turlik, T. R. Newhouse, J. Am. Chem. Soc. 2016, 138, 1166–
1169.
[15] A. W. Schuppe, D. Huang, Y. Chen, T. R. Newhouse, J. Am. Chem. Soc.
2018, 140, 2062–2066.
[16] M. Chen, G. Dong, J. Am. Chem. Soc. 2017, 139, 7757–7760.
[17] Z. Wang, Z. He, L. Zhang, Y. Huang, J. Am. Chem. Soc. 2018, 140, 735–
740.
[18] a) J.-B. Falmagne, J. Escudero, S. Taleb-Sahraoui, L. Ghosez, Angew.
Chem. Int. Ed. Engl. 1981, 20, 879–880; b) A. B. Charette, M. Grenon,
Can. J. Chem. 2001, 79, 1694–1703; c) M. Movassaghi, M. D. Hill, J. Am.
Chem. Soc. 2006, 128, 14254–14255; d) M. Movassaghi, M. D. Hill, O.
K. Ahmad, J. Am. Chem. Soc. 2007, 129, 10096–10097.
[19] a) D. Kaiser, N. Maulide, J. Org. Chem. 2016, 81, 4421–4428; b) V. Tona,
A. de la Torre, M. Padmanaban, S. Ruider, L. González, N. Maulide, J.
Am. Chem. Soc. 2016, 138, 8348–8351; c) D. Kaiser, C. J. Teskey, P.
Adler, N. Maulide, J. Am. Chem. Soc. 2017, 139, 16040–16043; d) D.
Kaiser, A. de la Torre, S. Shaaban, N. Maulide, Angew. Chem. Int. Ed.
2017, 56, 5921–5925.
In conclusion, we report a novel procedure for the synthesis of
-unsaturated amides from the corresponding saturated amide
starting materials. The reaction proceeds by electrophilic
activation
followed
by
a
unique
selenium-mediated
dehydrogenation. This process conveys good functional group
tolerance and, significantly, enables the desaturation of amides in
the presence of esters, ketones and nitriles. We have applied this
method to the synthesis of natural product piperine. Current
experiments allude to a mechanism which involves attack onto an
electrophilic Se(IV) species however further investigations on this
are underway in our laboratory and will be reported in due course.
[20] P. Chandrasekaran, J. T. Mague, M. S. Balakrishna, Inorg. Chem. 2006,
45, 5893–5897.
[21] P. Dupau, R. Epple, A. A. Thomas, V. V. Fokin, K. B. Sharpless, Adv.
Synth. Catal. 2002, 344, 421–433.
Acknowledgements
[22] M. Rodríguez-Fernández, X. Yan, J. F. Collados, P. B. White, S. R.
Harutyunyan, J. Am. Chem. Soc. 2017, 139, 14224–14231.
[23] J. Boonen, A. Bronselaer, J. Nielandt, L. Veryser, G. De Tré, B. De
Spiegeleer, J. Ethnopharmacol. 2012, 142, 563–590
We are thankful to the ERC (CoG VINCAT) and FWF (P 30226 to
N.M.; M 2274 to C.J.T.) for financial support of this project. The
University of Vienna is gratefully acknowledged for continued
generous support of our research programs.
[24] a) F. N. McNamara, A. Randall, M. J. Gunthorpe, Br. J. Pharmacol. 2005,
144, 781–790; b) L. Gorgani, M. Mohammadi, G. D. Najafpour, M. Nikzad,
Compr. Rev. Food Sci. Food Saf. 2017, 16, 124–140; c) B. Chopra, A.
K. Dhingra, R. P. Kapoor, D. N. Prasad, Open Chem. J. 2016, 3, 75–96;
d) T. Mandai, T. Moriyama, K. Tsujimoto, M. Kawada, J. Otera,
Tetrahedron Lett. 1986, 27, 603–606; e) R. Schobert, S. Siegfried, G. J.
Gordon, J. Chem. Soc. Perkin 1 2001, 2393–2397; f) P. S.-W. Leung, Y.
Teng, P. H. Toy, Org. Lett. 2010, 12, 4996–4999; g) T. Nakai, H. Setoi,
Y. Kageyama, Tetrahedron Lett. 1981, 22, 4097–4100.
Keywords: dehydrogenation • amide activation • hypervalent
iodine • seleninic acid • triflic anhydride
[1]
[2]
[3]
[4]
A. Michael, J. Prakt. Chem. 1887, 35, 349–356.
B. E. Rossiter, N. M. Swingle, Chem. Rev. 1992, 92, 771–806.
J. Hu, M. Bian, H. Ding, Tetrahedron Lett. 2016, 57, 5519–5539.
P. Wadhwa, A. Kharbanda, A. Sharma, Asian J. Org. Chem. 2018, 7,
634–661.
[25] S. N. Gradl, J. J. Kennedy-Smith, J. Kim, D. Trauner, Synlett 2002, 411–
414.
[26] a) D. H. R. Barton, J. W. Morzycki, W. B. Motherwell, S. V. Ley, J. Chem.
Soc., Chem. Commun. 1981, 1044–1045; b) D. H. R. Barton, C. R. A.
Godfrey, J. W. Morzycki, W. B. Motherwell, S. V. Ley, J. Chem. Soc.,
Perkin Trans. I 1982, 1947–1952.
[5]
a) M. Julia, J.-M. Paris, Tetrahedron Lett. 1973, 14, 4833–4836; b) E.
Knoevenagel, Ber. Dtsch. Chem. Ges. 1898, 31, 2596–2619; c) D. J.
Peterson, J. Org. Chem. 1968, 33, 780–784; d) G. Wittig, U. Schöllkopf,
Chem. Ber. 1954, 87, 1318–1330; e) G. Wittig, W. Haag, Chem. Ber.
1955, 88, 1654–1666.
[27] Formation of PhSeSePh was observed by NMR upon addition of NEt3
but this NMR signal gradually disappears over time if DMP is present in
the solution. In addition, we observed a peak in 77Se NMR (CD2Cl2) at
1276 ppm when mixing PhSe(O)OH, NEt3 and DMP together which we
tentatively assign to BSA. For literature 77Se NMR values, see: D. H. R.
Barton, T. Okano, S. I. Parekh, Tetrahedron 1991, 47, 1823–1836.
[28] Replacement of PhSe(O)OH with BSA gave the product cleanly, albeit it
in lower yield (see SI for details).
[6]
a) T.-L. Choi, A. K. Chatterjee, R. H. Grubbs, Angew. Chem. Int. Ed. 2001,
40, 1277–1279; b) S. J. Connon, S. Blechert, Angew. Chem. Int. Ed.
2003, 42, 1900–1923; c) E. C. Yu, B. M. Johnson, E. M. Townsend, R.
R. Schrock, A. H. Hoveyda, Angew. Chem. Int. Ed. 2016, 55, 13210–
13214.
[7]
[8]
C. A. Kingsbury, D. J. Cram, J. Am. Chem. Soc. 1960, 82, 1810–1819.
a) H. J. Reich, I. L. Reich, J. M. Renga, J. Am. Chem. Soc. 1973, 95,
5813–5815; b) H. J. Reich, J. M. Renga, I. L. Reich, J. Am. Chem. Soc.
1975, 97, 5434–5447; c) K. B. Sharpless, R. F. Lauer, A. Y. Teranishi, J.
Am. Chem. Soc. 1973, 95, 6137–6139.
[29] 77Se NMR (CD2Cl2) of a mixture of PhSe(O)OH, NEt3 and Ac2O showed
peaks at 461 ppm and 1215 ppm which we postulate to be PhSeSePh
and PhSe(O)OAc, respectively.
[9]
a) Y. Ito, T. Hirao, T. Saegusa, J. Org. Chem. 1978, 43, 1011–1013; b)
R. J. Theissen, J. Org. Chem. 1971, 36, 752–757.
[10] a) T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 14566–14569; b)
T. Diao, D. Pun, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 8205–8212;
c) A. V. Iosub, S. S. Stahl, ACS Catal. 2016, 6, 8201–8213.
[11] a) J. Muzart, Eur. J. Org. Chem. 2010, 3779–3790 ; b) M.-M. Wang, X.-
S. Ning, J.-P. Qu, Y.-B. Kang, ACS Catal. 2017, 7, 4000–4003; c) Y.
This article is protected by copyright. All rights reserved.