4592
H. Kishino et al. / Bioorg. Med. Chem. Lett. 19 (2009) 4589–4593
Table 4
Table 3 (continued)
Brain penetrability of imidazo[1,2-a]pyridine compounds 8b and 8ja
Compound Ar1–Ar2
R1 MCH1R binding MCH1R FLIPR clog Pb
a
a
IC50 (nM)
IC50 (nM)
Compound
Plasma (
lM)
Brain (nmol/g)
8b
8j
1.4
5.0
1.6
2.5
F
8n
Me 6.8
29
3.7
a
N
Values are means of 3 experiments. The plasma and brain concentrations were
measured 2 h following oral administration of 10 mg/kg of compounds in SD rat.
N
F
functional activities, high brain and plasma concentrations were
observed 2 h after oral dosing (2.5 nmol/g and 5.0 lM for brain
and plasma levels, respectively). The brain level of 8j was eightfold
higher than that of 1.
In conclusion, we have discovered imidazo[1,2-a]pyridine ana-
logs as potent MCH1R antagonists. Detailed SAR studies around
the imidazo[1,2-a]pyridine series revealed that incorporation of a
methyl substituent at the 3-position of the imidazo[1,2-a]pyridine
ring significantly improves binding and functional activity. Fur-
thermore, appreciable brain exposure was achieved in rats after
oral administration of imidazo[1,2-a]pyridine derivative 8j.
N
N
8o
Me 2.5
Me 102
Me 61
Me 44
70
4.2
2.5
3.3
3.2
F
N
8p
164
217
121
N
N
F
8q
N
N
References and notes
F
N
8r
1. Saito, Y.; Nothacker, H. P.; Civelli, O. Trends Endocrinol. Metab. 2000, 11, 299.
2. Schwartz, M. W.; Woods, S. C.; Porte, D.; Seeley, R. J.; Baskin, D. G. Nature 2000,
404, 661.
N
3. Qu, D. Q.; Ludwig, D. S.; Gammeltoft, S.; Piper, M.; Pelleymounter, M. A.; Cullen,
M. J.; Mathes, W. F.; Przypek, J.; Kanarek, R.; Maratos-Flier, E. Nature 1996, 380,
243.
4. Mizuno, T. M.; Kleopoulos, S. P.; Bergen, H. T.; Roberts, J. L.; Priest, C. A.; Mobbs,
C. V. Diabetes 1998, 47, 294.
a
Values are means of 2 experiments. Compounds competed with [125I]-MCH for
binding at the human MCH1 receptor.
b
clog P values were calculated by ACD software. nd = not determined.
5. Hanada, R.; Nakazato, M.; Matsukura, S.; Murakami, N.; Yoshimatsu, H.; Sakata,
T. Biochem. Biophys. Res. Commun. 2000, 268, 88.
6. Marsh, D. J.; Weingarth, D. T.; Novi, D. E.; Chen, H. Y.; Trumbauer, M. E.; Chen,
A. S.; Guan, X. M.; Jiang, M. M.; Feng, Y.; Camacho, R. E.; Shen, Z.; Frazier, E. G.;
Yu, H.; Metzger, J. M.; Kuca, S. J.; Shearman, L. P.; Gopal-Truter, S.; MacNeil, D.
J.; Strack, A. M.; MacIntyre, D. E.; Van der Ploeg, L. H. T.; Qian, S. Proc. Natl. Acad.
Sci. U.S.A. 2002, 99, 3240.
7. Gomori, A.; Ishihara, A.; Ito, M.; Mashiko, S.; Matsushita, H.; Yumoto, M.; Ito,
M.; Tanaka, T.; Tokita, S.; Moriya, M.; Iwaasa, H.; Kanatani, A. Am. J. Physiol.
Endocrinol. Metab. 2003, 284, E583.
trast, introduction of a methyl group to the 3-positon of the imi-
dazo[1,2-a]pyridine ring as in 8c exhibited good binding activity
(IC50 value of 3.3 nM), a 40-fold improvement over the 3-unsubsti-
tuted imidazo[1,2-a]pyridine derivative 7h. Furthermore, 8c has
significantly improved functional activity (IC50 value of 26 nM)
compared with 8b. Using the 2-cyclopropyl-3-methylimi-
dazo[1,2-a]pyridine core as a template, we further explored the
biaryl region. A variety of substituents at the para-position of the
terminal aromatic ring and installation of heteroaromatic rings
were investigated. The trifluoromethyl (8b) and chloro (8d) deriv-
atives exhibited good binding affinities. However, their functional
activities were considerably lower (IC50 values of 1000 and
100 nM for 8b and 8d, respectively), perhaps due to their high lipo-
philicity. While small substituents such as fluoro (8e), methyl (8f),
and methoxy (8g) were well-tolerated, introduction of a relatively
large methylsulfonyl group as in 8h resulted in a drop in potency.
Replacement of the 2-pyridyl group of 8b and 8e by a 3-pyridyl
group as in 8i and 8j resulted in comparable binding affinities
(IC50 values of 4.0 and 4.4 nM, respectively). Furthermore, com-
pound 8j, which has relatively lower lipophilicity than 8i, exhibited
a significant improvement in functional activity with an IC50 value
of 20 nM. Installation of a pyrimidine ring at the left-hand side of
the biaryl moiety was detrimental to potency (8k), whereas 8n
containing a pyrimidine ring at the right-hand side was better tol-
erated. Similarly, the pyridine derivatives 8l and 8m and the pyra-
zine derivative 8o displayed good binding and functional activities.
Finally, incorporation of either a bipyridyl or pyridyl–pyrimidyl
moiety, as in 8p–r, led to comparably reduced activities.
8. Shimada, M.; Tritos, N. A.; Lowell, B. B.; Flier, L. S.; Maratos-Flier, E. Nature
1998, 396, 670.
9. Ludwig, D. S.; Tritos, N. A.; Mastaitis, J. W.; Kulkarni, R.; Kokkotou, E.; Elmquist,
J.; Lowell, B.; Flier, J. S.; Maratos-Flier, E. J. Clin. Invest. 2001, 107, 379.
10. Borowsky, B.; Durkin, M. M.; Ogozalek, K.; Marzabadi, M. R.; DeLeon, J.;
Heurich, R.; Lichtblau, H.; Shaposhnik, Z.; Daniewska, I.; Blackburn, T. P.;
Branchek, T. A.; Gerald, C.; Vaysse, P. J.; Forray, C. Nat. Med. 2002, 8, 825.
11. Mashiko, S.; Ishihara, A.; Gomori, A.; Moriya, R.; Ito, M.; Iwaasa, H.; Matsuda,
M.; Feng, Y.; Shen, Z.; Marsh, D. J.; Bednarek, M. A.; MacNeil, D. J.; Kanatani, A.
Endocrinology 2005, 146, 3080.
12. (a) Carpenter, A. J.; Al Barazanji, K. A.; Barvian, K. K.; Bishop, M. J.; Britt, C. S.;
Cooper, J. P.; Goetz, A. S.; Grizzle, M. K.; Hertzog, D. L.; Ignar, D. M.; Morgan, R.
O.; Peckham, G. E.; Speake, J. D.; Swain, W. R. Bioorg. Med. Chem. Lett. 2006, 16,
4994; (b) Dyck, B.; Zhao, L.; Tamiya, J.; Pontillo, J.; Hudson, S.; Ching, B.; Heise,
C. E.; Wen, J.; Norton, C.; Madan, A.; Schwarz, D.; Wade, W.; Goodfellow, V. S.
Bioorg. Med. Chem. Lett. 2006, 16, 4237; (c) Hertzog, D. L.; Al Barazanji, K. A.;
Bigharn, E. C.; Bishop, M. J.; Britt, C. S.; Carlton, D. L.; Cooper, J. P.; Daniels, A. J.;
Garrido, D. M.; Goetz, A. S.; Grizzle, M. K.; Guo, Y. C.; Handlon, A. L.; Ignar, D.
M.; Morgan, R. O.; Peat, A. J.; Tavares, F. X.; Zhou, H. Q. Bioorg. Med. Chem. Lett.
2006, 16, 4723; (d) Hudson, S.; Kiankarimi, M.; Rowbottom, M. W.; Vickers, T.
D.; Wu, D. P.; Pontillo, J.; Ching, B.; Dwight, W.; Goodfellow, V. S.; Schwarz, D.;
Heise, C. E.; Madan, A.; Wen, J.; Ban, W.; Wang, H.; Wade, W. S. Bioorg. Med.
Chem. Lett. 2006, 16, 4922; (e) Jiang, J. L.; Hoang, M.; Young, J. R.; Chaung, D.;
Eid, R.; Turner, C.; Lin, P.; Tong, X. C.; Wang, J. Y.; Tan, C.; Feighner, S.; Palyha,
O.; Hreniuk, D. L.; Pan, J.; Sailer, A. W.; MacNeil, D. J.; Howard, A.; Shearman, L.;
Stribling, S.; Camacho, R.; Strack, A.; Van der Ploeg, L. H. T.; Goulet, M. T.;
Devita, R. J. Bioorg. Med. Chem. Lett. 2006, 16, 5270; (f) Jiang, J. L.; Lin, P.; Hoang,
M.; Chang, L. H.; Tan, C.; Feighner, S.; Palyha, O. C.; Hreniuk, D. L.; Pan, J.; Sailer,
A. W.; Morin, N. R.; MacNeil, D. J.; Howard, A. D.; Van der Ploeg, L. H. T.; Goulet,
M. T.; Devita, R. J. Bioorg. Med. Chem. Lett. 2006, 16, 5275; (g) Kanuma, K.;
Omodera, K.; Nishiguchi, M.; Funakoshi, T.; Chaki, S.; Nagase, Y.; Iida, I.;
Yamaguchi, J.; Semple, G.; Tran, T. A.; Sekiguchi, Y. Bioorg. Med. Chem. 2006, 14,
3307; (h) Tavares, F. X.; Al Barazanji, K. A.; Bishop, M. J.; Britt, C. S.; Carlton, D.
L.; Cooper, J. P.; Feldman, P. L.; Garrido, D. M.; Goetz, A. S.; Grizzle, M. K.;
Hertzog, D. L.; Ignar, D. M.; Lang, D. G.; McIntyre, M. S.; Ott, R. J.; Peat, A. J.;
Zhou, H. Q. J. Med. Chem. 2006, 49, 7108; (i) Witty, D. R.; Bateson, J. H.; Hervieu,
G. J.; Jeffrey, P.; Johnson, C. N.; Muir, A. I.; O’Hanlon, P. J.; Stemp, G.; Stevens, A.
J.; Thewlis, K. M.; Wilson, S.; Winborn, K. Y. Bioorg. Med. Chem. Lett. 2006, 16,
The representative imidazo[1,2-a]pyridine derivatives 8b and 8j
were evaluated for brain penetration in rats (Table 4). After oral
administration of 10 mg/kg of compound 8b in rats, good brain
exposure was observed. Brain and plasma concentrations at 2 h
following oral dosing were 1.6 nmol/g and 1.4
lM, respectively.
In the case of 8j, which had a good combination of binding and