C. J. McIntyre et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5132–5135
5135
rine atom as the appropriate halogen in the 5-position of the pyr-
idine ring in 15. This allowed the RosenmundÀvon Braun cyana-
tion reaction (17?18) to proceed with the bromide while
retaining the heteroaryl-chloride for subsequent participation in
cross-coupling reactions (20?21).
ries) for providing scaled-up batches of synthetic intermediates
and Joan S. Murphy (Merck Research Laboratories) for high resolu-
tion mass spectral analysis of all final compounds.
References and notes
Data for the products obtained via this chemistry is illustrated
in Table 3. Although this set of compounds possessed pendant aryl
rings with diverse electronic and steric topology, testing did not
reveal the emergence of any clear SAR trends regarding NR2B
and hERG activities. There remained, however, a tendency for
NR2B and hERG activities tracking together as in 22h and 22i.
A third synthetic iteration on the tricyclic motif involved the
introduction of a weakly basic functionality into the 3-position of
the fused pyridine heterocycle. Scheme 3 shows the two-step elab-
oration of intermediate 18 using Buchwald19 amination chemistry
to afford tertiary amine analogs (23a–f).
Derivatives possessing weakly basic cyclic amine in the 3-pyridyl
position (Table 4) were not as active against NR2B as their aryl coun-
terparts (Tables 1 and 3). Pyrrolidine (23a), homopiperidine (23c),
morpholine (23d) and N-methylpiperazine (23f) derivatives exhib-
ited poor activity when evaluated in the NR2B binding assay
(Ki 196À16,000 nM). Modest NR2B activity was observed for the 4-
methylpiperidine (23e, Ki 83 nM) derivative. The piperidine (rac-
23b) analog, however, showed both good NR2B activity (Ki 43 nM)
and an absence of hERG ion channel activity (IP 10,000 nM). Further-
more, chiral preparative HPLC resolution of rac-23b gave an active
NR2B compound ((À)-23b, 17 nM) with greater than 1000-fold
selectivity over hERG (IP 20,000 nM).
1. Kennedy, M. B. Science 2000, 290, 750.
2. Muir, K. W. Curr. Opin. .Pharmacol. 2006, 6, 53.
3. Loftis, J. M.; Janowsky, A. Pharmacol. Ther. 2003, 97, 55.
4. (a) Chazot, P. L. Curr. Med. Chem. 2004, 11, 389; (b) Gogas, K. R. Curr. Opin.
Pharmacol. 2006, 6, 68; (c) Layton, M. E.; Kelly, M. J., III; Rodzinak, K. J. Curr. Top.
Med. Chem. 2006, 6, 697; (d) McCauley, J. A. Exp. Opin. Ther. Pat. 2005, 15, 389.
5. (a) Baldessarini, R. J. In Goodman s the Pharmacological Basis of Therapeutics;
Hardman, J. G., Limbird, L. E., Eds., 10th ed.; McGraw-Hill: New York, 2001; pp
451–468. 486–490; (b) Eisendrath, S. J.; Lichtmacher, J. E. In Current Medical
Diagnosis & Treatment; Tierney, L. M., Jr., McPhee, S. J., Papadakis, M. A., Eds.,
45th ed.; Lange Medical Books/McGraw-Hill: New York, 2006; pp 1058–1061.
1071; (c) Dubroeucq, M.-C.; Stutzmann, J.-M.; Manfré, F.; Capet, M.; Böhme, G.
A.. In Mcguire, J. L., Ed.; Pharmaceuticals Classes, Therapeutic Agents, Areas of
Application; Wiley: Weinheim, 2000; Vol. 2, pp 588–605. 610–620.
6. Details concerning the synthesis and structure–activity-development that lead
to the discovery of 1 will be the subject of a future communication.
7. McCauley, J. A.; Butcher, J. W.; Claremon, D. A.; Liverton, N. J.; McIntyre, C. J.;
Romano, J. J. WO03084931; Chem. Abstr. 2003, 139, 323441.
8. (a) Vaz, R. J.; Li, Y.; Rampe, D.. In Progress in Medicinal Chemistry; King, F. D.,
Lawton, G., Eds.; Elsevier: Amsterdam, 2005; Vol. 43, pp 1–18; (b) Pearlstein,
R.; Vaz, R.; Rampe, D. J. Med. Chem. 2003, 46, 2017.
9. Calzada, B. C.; De Artiñano, A. A. Pharmacol. Res. 2001, 44, 195.
10. (a) Villani, F. J.; Daniels, P. J. L.; Ellis, C. A.; Mann, T. A.; Wang, K.-C. J. Heterocycl.
Chem. 1971, 8, 73; (b) Brenner, D. G.; Halczenko, W.; Shepard, K. L. J. Heterocycl.
Chem. 1982, 19, 897.
11. Christian, J.; Loebering, H. G.; Trinkl, K. H. Synthesis 1977, 5, 326.
12. Wagner, R. B.; Zook, H. D. Synthetic Organic Chemistry; Wiley & Sons: New York,
1953.
13. All final compounds gave a satisfactory 1H NMR, C, H and N combustion
analysis and high resolution mass spectral data. Representative
characterization data for rac-9: 1H NMR 400 MHz (CDCl3) d 8.80 (d, J = 2 Hz,
1H); 8.26 (s, 1H); 8.04 (d, J = 8 Hz, 1H); 7.69–7.40 (m, 9H); 5.39 (d, J = 4 Hz,
1H); 2.65 (d, J = 4 Hz, 1H). Anal. Calcd for C21H14N2OÁ0.35 H2O: C, 79.65; H,
4.68; N, 8.85. Found: C, 79.59; H, 4.46; N, 8.84. HRMS for C21H15N2O (M+H)+,
calcd: 311.1179, found: 311.1173.
Two compounds, (À)-9 and (À)-23b, were subsequently as-
sessed in both an
a
1-adrenergic receptor20 counter-screen assay
and a NR2B Ca2+ influx cell-based assay. Results for the
a1-adren-
ergic receptor assay ((À)-9 Ki 5,000 nM, (À)-23b Ki > 21,000 nM)
showed that the pendant piperidine analog had fourfold greater
selectivity than the phenyl compound. Consistent with the NR2B
binding assay results, comparison of (À)-9 and (À)-23b in a
NR2B Ca2+ influx cell-based assay7 showed a threefold loss in activ-
ity ((À)-9 IC50 9 nM, (À)-23b IC50 27 nM) for the piperidine
derivative.
In summary, a new class of NMDA/NR2B inhibitors were discov-
ered and their SAR investigated. Presence of a hydroxyl substituent
on carbon-5 of the central ring and replacement of a pendant aryl
with a piperidine heterocycle were necessary elements for achiev-
ing separation of NR2B and hERG activities. Compound (À)-23b
possesses a balanced profile with good NR2B activity and selectiv-
14. (a) Kiss, L.; Cheng, G.; Bednar, B.; Bednar, R. A.; Bennett, P. B.; Kane, S. A.;
McIntyre, C. J.; McCauley, J. A.; Koblan, K. S. Neurochem. Int. 2005, 46, 453; (b)
Mosser, S. D.; Gaul, S. L.; Bednar, B.; Koblan, K. S.; Bednar, R. A. J. Assoc. Lab.
Automat. 2003, 8, 54.
15. Chiral preparative HPLC chromatography was conducted using a ChirapakÒ AS
250 Â 4.6 mm column, 70% hexane (0.1% diethylamine)/30% ethanol, flow
1.0 mL/min, absorbance 310 nm.
16. Butcher, J. W.; Claremon, D. A.; Connolly, T. M.; Dean, D. C.; Karczewski, J.;
Koblan, K. S.; Kostura, M. J.; Liverton, N. J.; Melillo, D. G., PCT Int. Appl. WO
2002005860, 2002.
17. (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722; (b)
Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 1998, 37, 3387.
18. Marcoux, J.-F.; Marcotte, F.-A.; Wu, J.; Dormer, P. G.; Davies, I. W.; Hughes, D.;
Reider, P. J. J. Org. Chem. 2001, 66, 4194.
19. Wolfe, J. P.; Buchwald, S. L. Angew. Chem., Int. Ed. 1999, 38, 2413.
20.
a
1-Adrenergic binding assays were conducted according to: Greengrass, P.;
ity over hERG and
a1-adrenergic receptors.
Bremner, R. Eur. J. Pharmacol. 1979, 55, 323.
Acknowledgements
The authors wish to thank Jean-François Marcoux (Merck
Process Research) and Garry R. Smith (Merck Research Laborato-