synthesis of oligosaccharides.11 In this context, we believe
that the design of methods that allow the direct exchange of
anomeric leaving groups between partially unprotected sugar
building blocks (glycosyl donors or acceptors) would be
useful.12
Glycosyl 1,2-orthoesters, first introduced in glycosylation
studies by Kochetkov and co-workers,13-15 have been
revitalized by the advent of n-pentenyl orthoesters
(NPOEs).16,17 Other research groups have also illustrated the
value of 1,2-orthoesters in oligosaccharide synthesis.18,19
could not be applied to partially unprotected NPOE substrates
because addition of IF across the double bond was the
preferred reaction. In this manuscript, we disclose that
furanose- and pyranose-derived 1,2-O-alkyl orthoesters, 1,
can be efficiently transformed into glycosyl fluorides, 2, upon
treatment with the HF-pyridine complex26,27 (Scheme 1),
and that this transformation can be applied to partly
unprotected substrates. In this reaction, HF-pyridine plays
a dual role as the acid, necessary to promote unravelling of
the 1,2-orthoester,28 and as the source of the nucleophilic
fluoride ion.
Scheme 1
.
Transformation of 1,2-Orthoesters into Glycosyl
Fluorides
Table 1. HF-Pyridine Mediated Transformation of
1,2-Orthoesters into Furanosyl Fluorides in CH2Cl2 at -40 °C
We have recently described the transformation of partially
unprotected n-pentenyl glycosides (NPGs),20 and thiogly-
cosides,21 into glycosyl fluorides22 mediated by bis(pyridi-
ne)iodonium tetrafluoroborate23/HF-pyridine24 or N-io-
dosuccinimide/HF-pyridine.25 These methods, however,
a Addition of 3 to a precooled solution of HF-py in CH2Cl2. b Addition
of the HF-py complex to a solution of 3 in CH2Cl2.
(10) (a) Demchenko, A. V.; De Meo, C. Tetrahedron Lett. 2002, 43,
8819–8822. (b) Lo´pez, J. C.; Uriel, C.; Guillamo´n-Martin, A.; Valverde,
S.; Go´mez, A. M. Org. Lett. 2007, 9, 2759–2762.
(11) (a) Zhu, T.; Boons, G. J. Tetrahedron Lett. 1998, 39, 2187–2190.
(b) Zhu, T.; Boons, G. J. Angew. Chem., Int. Ed. Engl. 1998, 37, 1898–
2000.
We first studied the HF-pyridine mediated transformation
of ribose 1,2-orthoesters 3 (Table 1). The reactions, which
took place smoothly at -40 °C in CH2Cl2,29 were usually
completed within 5-10 min. In some instances, the yield of
glycosyl fluoride could be improved by increasing the amount
of HF-pyridine (Table 1, entry i vs ii). n-Pentenyl orthoe-
sters (NPOEs), e.g., 3b, could also be used in the preparation
of glycosyl fluorides (Table 1, entry iii). Finally, from an
experimental standpoint, it is crucial that the orthoester be
added to the solution of HF-pyridine in CH2Cl2, to avoid
acid-catalyzed rearrangement to glycosides (Table 1, entry
iV).
(12) Hanessian, S.; Lu, P. P.; Ishida, H. J. Am. Chem. Soc. 1998, 120,
13296–13330.
(13) (a) Kochetkov, N. K.; Khorlin, A. J.; Bochkov, A. F. Tetrahedron
Lett. 1964, 5, 289–293. (b) Kochetkov, N. K. Tetrahedron 1987, 43, 2389–
2436
.
(14) Fraser-Reid, B.; Lo´pez, J. C. Orthoesters and Related Derivatives.
In Handbook of Chemical Glycosylation: AdVances in StereoselectiVity and
Therapeutic ReleVance; Demchenko, A. V., Ed.; Wiley-VCH: New York,
2008; Chapter 5.1
(15) Kong, F. Carbohydr. Res. 2007, 342, 345–373
.
.
(16) (a) Allen, J. G.; Fraser-Reid, B. J. Am. Chem. Soc. 1999, 121, 468–
469. (b) Mach, M.; Schlueter, U.; Mathew, F.; Fraser-Reid, B.; Hazen, K. C.
Tetrahedron 2002, 58, 7345–7354. (c) Lu, J.; Jayaprakash, K. N.; Schlueter,
U.; Fraser-Reid, B. J. Am. Chem. Soc. 2004, 126, 7450–7457. (d) Lu, J.;
Fraser-Reid, B. Chem. Commun. 2005, 862–864. (e) Jayaprakash, K. N.;
The procedure was next applied to ribo- and arabino-
orthoesters, 6-11 (Table 2). As previously observed, methyl
or NPOEs could be used without appreciable changes in
Lu, J.; Fraser-Reid, B. Angew. Chem., Int. Ed. 2005, 44, 5894–5898
(17) Fraser-Reid, B.; Lu, J.; Jayaprakash, K. N.; Lo´pez, J. C. Tetrahe-
dron: Asymmetry 2006, 17, 2449–2463
.
.
(18) (a) Bamhaoud, T.; Sanchez, S.; Prandi, J. Chem. Commun. 2000,
659–660. (b) Sanchez, S.; Bamhaoud, T.; Prandi, J. Tetrahedron Lett. 2000,
41, 7447–7452. (c) Marotte, K.; Sanchez, S.; Bamhaoud, T.; Prandi, J. Eur.
(25) Lo´pez, J. C.; Bernal-Albert, P.; Uriel, C.; Go´mez, A. M. Eur. J.
Org. Chem. 2008, 5037–5041.
J. Org. Chem. 2003, 3587–3598
.
(19) (a) Liu, X.; Wada, R.; Boonyarattanakalin, S.; Castagner, B.;
Seeberger, P. H. Chem. Commun. 2008, 3510–3512. (b) Boonyarattanakalin,
S.; Liu, X.; Michieletti, M.; Lepenies, B.; Seeberger, P. H. J. Am. Chem.
Soc. 2008, 130, 16791–16799. (c) Ravida`, A.; Liu, X.; Kovacs, L.;
(26) Olah, G. A.; Welch, J. T.; Vankar, Y. D.; Nojima, M.; Kerekes, I.;
Olah, J. A. J. Org. Chem. 1979, 44, 3872–3881
.
(27) The HF-pyridine complex has been used as a source of fluoride
in the preparation of glycosyl fluorides :(a) Hayashi, M.; Hashimoto, S.;
Noyori, R. Chem. Lett. 1984, 1747–1750. (b) Szarek, W. A.; Grynkiewicz,
G.; Doboszewski, B.; Hay, G. W. Chem. Lett. 1984, 1751–1754. (c) Bro¨der,
W.; Kunz, H. Carbohydr. Res. 1993, 249, 221–241. (d) Palme, M.; Vasella,
A. HelV. Chim. Acta 1995, 78, 959–969. (e) Lee, Y. J.; Lee, B. Y.; Jeon,
Seeberger, P. H. Org. Lett. 2006, 8, 1815–1818
.
(20) Fraser-Reid, B.; Udodong, U. E.; Wu, Z.; Ottosson, H.; Merrit,
J. R.; Rao, C. S.; Roberts, C.; Madsen, R. Synlett 1992, 927–942.
(21) Oscarson, S. Carbohydrates in Chemistry and Biology; Ernst, B.,
Hart, G. W., Sinay¨, P., Eds.; Wiley-VCH: Weinheim, 2000; Vol. 1, pp
93-116.
H. B.; Kim, K. S. Org. Lett. 2006, 8, 3971–3974
.
(28) In this context, treatment of orthoester 3a, with Et3N·HF, less acidic
than HF-pyridine but yet a good source of fluoride ion ( McClinton, M. A.
Aldrichim. Acta 1995, 28, 31-35), left compound 3a unchanged.
(29) Reaction at -378 °C (HF-py, 20 equiv) was sluggish, leaving
considerable amounts of unreacted 1,2-orthoester among other compounds,
in a complex reaction mixture.
(22) Mukaiyama, T. Angew. Chem., Int. Ed. 2004, 43, 5590–5614.
(23) Barluenga, J.; Gonza´lez, J. M.; Campos, P. J.; Asensio, G. Angew.
Chem., Int. Ed. Engl. 1985, 24, 319–320.
(24) Lo´pez, J. C.; Bernal-Albert, P.; Uriel, C.; Valverde, S.; Go´mez,
A. M. J. Org. Chem. 2007, 72, 10268–10271.
Org. Lett., Vol. 11, No. 18, 2009
4129