Table 3 Absorption and emission profiles of 9a (red) and 9b (orange)
in toluene spectroscopic data (absorption maxima labs, emission
maxima lem, Stokes shift Dnꢀ) and fluorescence quantum yield (Ff) of
selected substituted compounds in different solvents
pyrroles can have a profound effect on the properties of the
resulting products.
In conclusion, through an easy and selective synthesis of
halogenated acylpyrroles, we have been able to prepare several
new reactive BODIPY dyes in good total yields. These dyes
show a range of tunable properties making the possibilities of
this approach numerous. We are currently performing a
detailed study of the reactivity of these halogenated dyes as
well as a full spectroscopic/photophysical characterization.
The results hereof will be reported in due course.
The authors want to thank the I.W.T. (doctoral fellowship
to V.L.), the F.W.O.-Vlaanderen, the Ministerie voor
Wetenschapsbeleid and the University of Leuven for financial
support.
Notes and references
1 (a) R. Martınez-Manez and F. Sancenon, Chem. Rev., 2003, 103,
´ ´ ´
BODIPY
Solvent
l
abs/nm
l
em/nm
Dnꢀ/cmÀ1
Ff
4419; (b) B. Valeur, Molecular Fluorescence. Principles
and Applications, Wiley-VCH, Weinheim, Germany, 2002;
(c) R. Haughland, The Handbook. A Guide to Fluorescence Probes
and Labeling Technologies, Molecular Probes, Inc., Eugene,
Oregon, USA, 10th edn, 2005.
2 (a) A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891;
(b) R. Ziessel, G. Ulrich and A. Harriman, Angew. Chem., Int. Ed.,
2008, 47, 1184; (c) A. Treibs and F.-H. Kreuzer, Liebigs Ann. Chem.,
1968, 718, 208–223.
3 W. Qin, M. Baruah, M. Sliwa, M. Van der Auweraer, W. De
Borggraeve, D. Beljonne, B. Van Averbeke and N. Boens, J. Phys.
Chem. A, 2008, 112, 6104.
4 W. Qin, M. Baruah, W. De Borggraeve and N. Boens,
J. Photochem. Photobiol., A, 2006, 183, 190.
9a
Toluene
THF
MeOH
MeCN
Toluene
THF
MeOH
MeCN
Toluene
THF
MeOH
MeCN
Toluene
THF
MeOH
MeCN
Toluene
THF
MeOH
MeCN
Toluene
THF
542
535
530
525
521
513
507
503
524
518
515
512
516
507
502
498
527
522
517
513
567
560
556
556
556
551
548
545
561
569
566
566
535
530
526
525
536
540
533
533
553
549
545
543
583
577
574
574
465
543
620
699
1369
1918
2056
2213
392
437
406
484
723
1205
1159
1319
892
942
994
0.93
0.93
0.85
0.77
0.61
0.50
0.37
0.25
0.92
0.93
0.93
0.80
0.85
0.78
0.74
0.55
0.83
0.86
0.79
0.85
0.87
0.74
0.79
0.58
9b
9c
9d
10a
8i
5 T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel and
J. Roncali, Chem. Commun., 2009, 1673; J. Liu, E. Ermilov,
B. Roder and D. Ng, Chem. Commun., 2009, 1517.
¨
6 (a) T. Rohand, M. Baruah, W. Qin, N. Boens and W. Dehaen,
Chem. Commun., 2006, 266; (b) L. Li, B. Nguyen and K. Burgess,
¨
Bioorg. Med. Chem. Lett., 2008, 18, 3112; (c) O. Dilek and
S. L. Bane, Tetrahedron Lett., 2008, 49, 1413.
7 T. Rohand, W. Qin, N. Boens and W. Dehaen, Eur. J. Org. Chem.,
2006, 4658.
8 W. Qin, V. Leen, T. Rohand, W. Dehaen, P. Dedecker, M. Van der
Auweraer, K. Robeyns, L. Van Meervelt, D. Beljonne, B. Van
Averbeke, J. Clifford, K. Driesen, K. Binnemans and N. Boens,
J. Phys. Chem. A, 2009, 113, 439.
1077
484
526
564
564
MeOH
MeCN
9 (a) T. Wood and A. Thompson, Chem. Rev., 2007, 107, 1831;
(b) L. Wu and K. Burgess, Chem. Commun., 2008, 4933.
10 P. Sonnet, J. Org. Chem., 1972, 37, 925.
of the respective 2-alkynyl isomers 9b and 9d. In contrast, in
solvents of intermediate and high polarity, the emission
maxima of 9a and 9c are blue-shifted in comparison with
those of 9b and 9d, respectively, resulting in small Stokes shifts
for the 3-alkynyl isomers 9a and 9c.
11 (a) S. Petruso and S. Caronna, J. Heterocycl. Chem., 1992, 29, 355;
(b) J. Laha, C. Muthiah, M. Taniguchi, B. McDowell, M. Ptaszek
and J. Lindsey, J. Org. Chem., 2006, 71, 4092; (c) E. Kim, B. Koo,
C. Song and K. Lee, Synth. Commun., 2001, 31, 3627;
(d) S. Berthiaume, B. Bray, P. Hess, Y. Liu, M. Maddox,
J. Muchowski and M. Scheller, Can. J. Chem., 1995, 73, 675;
(e) B. Bray and J. Muchowski, Can. J. Chem., 1990, 68, 1305;
(f) A. Guzman, M. Romero and J. Muchowski, Can. J. Chem.,
1990, 68, 791.
Compound 10a has relatively high Ff values, which are
much higher than those reported for 3,5-diphenyl and
3-chloro-5-phenyl substituted BODIPY dyes.11 The methyl
group at the 5-position apparently has
fluorescence enhancement effect.
a significant
12 (a) G. Cordell, J. Org. Chem., 1975, 40, 3161; (b) H. Gilow and
D. Burton, J. Org. Chem., 1981, 46, 2221.
As an example of the versatility of our approach, one can
see that the conformationally restricted dye 8i has strongly
red-shifted absorbance and fluorescence emission maxima,
even without the presence of an alkynyl substituent. It is
also noticeable that Ff of 8i remains high, even though
bromination at the 2-position has been used in the literature
to induce triplet state formation for photodynamic therapy.15
This example thus shows that a correct choice of the starting
13 (a) Z. Dost, S. Atilgan and E. Akkaya, Tetrahedron, 2006, 62, 8484;
(b) L. Bonardi, G. Ulrich and R. Ziessel, Org. Lett., 2008, 10, 2183;
(c) C. Wan, A. Burghart, J. Chen, F. Bergstroem, L. Johansson,
M. Wolford, T. Kim, M. Topp, R. Hochstrasser and K. Burgess,
Chem.–Eur. J., 2003, 9, 4430; (d) D. Zhang, Y. Wen, Y. Xiao,
G. Yu, Y. Liu and X. Qian, Chem. Commun., 2008, 4777.
14 J. White and G. McGillivray, J. Org. Chem., 1977, 42, 4248.
15 A. Gorman, J. Killoran, C. O’Shea, T. Kenna, W. Gallagher and
D. O’Shea, J. Am. Chem. Soc., 2004, 126, 10619.
ꢀc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 4515–4517 | 4517