J. Luo et al. / Tetrahedron 65 (2009) 6828–6833
6833
4.9. Synthesis of (2S,20S,30S,50R)-6-(50-allyl-30-
grants from The National Natural Science Foundation of China
(Grant No. 20772107), Zhejiang University, and Zhejiang University
Education Foundation. The authors thank Prof. T. F. Jamison of MIT,
USA for providing a copyof the 13C NMR spectrum of the acid 18, and
Lijie Sun for his assistance on the HPLC analysis of 15c.
methyltetrahydrofuran-20-yl)-2-methylhexanol (17)7
To a solution of 15c (500.0 mg, 1.50 mmol) in dry CH2Cl2 (15 mL)
cooled at ꢁ78 ꢀC was added dropwise a solution of diisobutyl-
aluminum hydride in hexane (1 M, 1.8 mL, 1.8 mmol) followed by
stirring for 1 h at the same temperature. The reaction was
quenched by carefully adding EtOAc (10 mL) and the mixture was
allowed to warm to 0 ꢀC. Saturated aqueous sodium potassium
tartrate was added and the resultant mixture was diluted with Et2O
(50 mL) with vigorous stirring. The organic layer was separated and
the aqueous layer was extracted with Et2O (2ꢃ30 mL). The com-
bined organic layer was dried over anhydrous Na2SO4, filtered, and
concentrated under reduced pressure to give the crude lactol 16.
To a solution of the above crude lactol 16 and allyltrimethylsilane
(0.48 mL, 3.0 mmol) in dry CH2Cl2 (30 mL) cooled at ꢁ78 ꢀC was
added BF3$OEt2 (0.57 mL, 4.5 mmol) via a syringe. The resultant
mixture was stirred for 2 h at ꢁ78 ꢀC and allowed to warm to room
temperature slowly. The reactionwas quenched by saturated NaHCO3
and the reaction mixture was extracted with CH2Cl2 (3ꢃ25 mL). The
combined organic layers were dried overanhydrous Na2SO4, filtrated,
and concentrated under reduced pressure. The residue was purified
Supplementary data
Supplementary data associated with this article can be found in
References and notes
1. For reviews, see: (a) Kobayashi, J.; Tsuda, M. Nat. Prod. Rep. 2004, 21, 77–93; (b)
Kobayashi, J.; Kubota, T. J. Nat. Prod. 2007, 70, 451–460; (c) Kobayashi, J.
J. Antibiot. 2008, 61, 271–284.
2. For isolation and structures of amphidinolide T1–T5, see: (a) Tsuda, M.; Endo,
T.; Kobayashi, J. J. Org. Chem. 2000, 65, 1349–1352; (b) Kobayashi, J.; Kubota, T.;
Endo, T.; Tsuda, M. J. Org. Chem. 2001, 66, 134–142; (c) Kubota, T.; Endo, T.;
Tsuda, M.; Shiro, M.; Kobayashi, J. Tetrahedron 2001, 57, 6175–6179.
3. (a) Fu¨ rstner, A.; Aı¨ssa, C.; Riveiros, R.; Ragot, J. Angew. Chem., Int. Ed. 2002, 41,
4763–4766; (b) Aı¨ssa, C.; Riveiros, R.; Ragot, J.; Fu¨rstner, A. J. Am. Chem. Soc.
2003, 125, 15512–15520.
4. Ghosh, A. K.; Liu, C. J. Am. Chem. Soc. 2003, 125, 2374–2375.
5. (a) Colby, E. A.; O’Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2004, 126, 998–999;
(b) Colby, E. A.; O’Brien, K. C.; Jamison, T. F. J. Am. Chem. Soc. 2005, 127, 4297–
4307; For synthesis of C13–C22 fragment of amphidinolide T2, see: O’Brien, K.
C.; Colby, E. A.; Jamison, T. F. Tetrahedron 2005, 61, 6243–6248.
6. Deng, L.-S.; Huang, X.-P.; Zhao, G. J. Org. Chem. 2006, 71, 4625–4635.
7. Yadav, J. S.; Reddy, C. S. Org. Lett. 2009, 11, 1705–1708.
8. For selective reviews on RCM, see: (a) Grubbs, R. H.; Chang, S. Tetrahedron 1998,
54, 4413–4450; (b) Fu¨rstner, A. Angew. Chem., Int. Ed. 2000, 39, 3012–3043;
(c) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29; (d) Schrock, R. R.;
Hoveyda, A. H. Angew. Chem., Int. Ed. 2003, 42, 4592–4633; (e) Deiters, A.; Martin,
S. F. Chem. Rev. 2004, 104, 2199–2238; (f) Grubbs, R. H. Tetrahedron 2004, 60,
7117–7140; (g) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem., Int. Ed. 2005,
by column chromatography (eluting with 20% EtOAc in PE) to give the
alcohol 17 (328.0 mg, 91%) as a colorless oil. [
20
a]
ꢁ10.9 (c 2.7,
D
CH2Cl2); lit.7 [
(film) 3391 (br), 2933, 1464, 1091, 1043 cmꢁ1
CDCl3)
a]
D
ꢁ6.0 (c 1.0, CHCl3); Rf¼0.28 (25% EtOAc in PE); IR
25
;
1H NMR (400 MHz,
d
5.83–5.73 (m, 1H), 5.06 (br d, J¼18.0 Hz, 1H), 5.02 (br d,
J¼10.0 Hz, 1H), 4.09 (quintet, J¼6.8 Hz, 1H), 3.86–3.80 (m, 1H), 3.48
and 3.39 (ABqd, J¼10.8, 6.0 Hz, 2H), 2.35–2.28 (m, 1H), 2.23–2.14 (m,
2H), 1.94–1.80 (br s, 1H), 1.78–1.65 (m, 2H), 1.65–1.53 (m, 2H), 1.50–
1.21 (m, 6H), 1.15–1.04 (m, 1H), 0.89 (d, J¼6.8 Hz, 3H), 0.88 (d,
J¼7.2 Hz, 3H); 13C NMR (100 MHz, CDCl3)
d 135.0, 116.7, 81.3, 75.9,
´
44, 4490–4527; (h) Gradillas, A.; Perez-Castells, J. Angew. Chem., Int. Ed. 2006, 45,
6086–6101; (i) Schrodi, Y.; Pederson, R. L. Aldrichimica Acta 2007, 40, 45–52;
(j) Hoveyda, A. H.; Zhugralin, A. R. Nature 2007, 450, 243–251; Also see: Handbook
of Metathesis; Grubbs, R. H., Ed.; Wiley–VCH: Weinheim, 2003; Vols. 1–3.
9. For a review on macrolactonization, see: Parenty, A.; Moreau, X.; Campagne,
J.-M. Chem. Rev. 2006, 106, 911–939.
68.2, 41.0, 39.2, 35.8, 35.7, 33.0, 30.3, 27.1, 26.8,16.6,13.9; MS (þCI) m/z
(relative intensity) 199 (MꢁC3Hþ5 ,100), 241 (MþHþ,10); HRMS (þESI)
calcd for C15H28O2Naþ (MþNaþ) 263.1982, found 263.1988.
10. For a comparative analysis, see: Colby, E. A.; Jamison, T. F. Org. Biomol. Chem.
2005, 3, 2675–2684.
4.10. Synthesis of (2S,20S,30S,50R)-6-(50-allyl-30-
methyltetrahydrofuran-20-yl)-2-methylhexanoic acid (18)5b
11. (a) Larsen, C. H.; Ridgway, B. H.; Shaw, J. T.; Woerpel, K. A. J. Am. Chem. Soc. 1999,
121, 12208–12209; (b) Schmitt, A.; Reissig, H.-U. Synlett 1990, 40–42.
12. For synthesis of C1–C12 fragment of amphidinolide T1, see: Abbineni, C.;
Sasmal, P. K.; Mukkanti, K.; Iqbal, J. Tetrahedron Lett. 2007, 48, 4259–4262.
13. (a) Chen, Y.; Jin, J.; Wu, J.; Dai, W.-M. Synlett 2006, 1177–1180; (b) Jin, J.; Chen,
Y.; Li, Y.; Wu, J.; Dai, W.-M. Org. Lett. 2007, 9, 2585–2588; (c) Dai, W.-M.; Chen,
Y.; Jin, J.; Wu, J.; Lou, J.; He, Q. Synlett 2008, 1737–1741.
To a solution of the alcohol 17 (335.0 mg, 1.4 mmol) in DMF
(14 mL) was added 28 drops of water. Then, pyridinium dichromate
(3.41 g, 9.0 mmol) was added and the resultant mixture was stirred
overnight at room temperature.24 The reaction mixture was directly
transferred to a silica gel column followed byeluting with 25% EtOAc
in PE to give the pure acid 18 (228.0 mg) and a mixed fraction with
DMF and pyridine. The latter was dissolved in EtOAc and washed
with 5% aqueous HCl for twice. The organic layer was dried over
Na2SO4, filtered, and concentrated under reduced pressure to give
14. Fukuzawa, S.; Seki, K.; Tatsuzawa, M.; Mutoh, K. J. Am. Chem. Soc.1997,119,1482–1483.
15. For SmI2-mediated enantioselective synthesis of cis-3,4-disubstituted
g-bu-
tyrolactones, see: (a) Kerrigan, N. J.; Hutchison, P. C.; Heightman, T. D.; Procter,
D. J. Chem. Commun. 2003, 1402–1403; (b) Kerrigan, N. J.; Hutchison, P. C.;
Heightman, T. D.; Procter, D. J. Org. Biomol. Chem. 2004, 2, 2476–2482; (c)
Zhang, Y.; Wang, Y.; Dai, W.-M. J. Org. Chem. 2006, 71, 2445–2455; (d) Vogel, J.
C.; Butler, R.; Procter, D. J. Tetrahedron 2008, 64, 11876–11883.
16. For reviews, see: (a) Molander, G. A.; Harries, C. R. Chem. Rev. 1996, 96, 307–
338; (b) Krief, A.; Laval, A.-M. Chem. Rev. 1999, 99, 745–778; (c) Edmonds, D. J.;
Johnston, D.; Procter, D. J. Chem. Rev. 2004, 104, 3371–3403; (d) Gopalaiah, K.;
Kagan, H. B. New J. Chem. 2008, 32, 607–637.
17. (a) Smith, A. B., III; Qiu, Y.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 1995, 117,
12011–12012; (b) Scheidt, K.A.; Bannister, T.D.; Tasaka, A.; Wendt, M.D.; Savall, B.
M.; Fegley, G.J.; Roush, W.R. J. Am. Chem. Soc. 2002, 124, 6981–6990; For the (S)-
enantiomer, see: (c) Mulzer, J.; Mantoulidis, A. Tetrahedron Lett. 1996, 37, 9179–
9182; (d) Walkup, R. D.; Kahl, J. D.; Kane, R. R. J. Org. Chem. 1998, 63, 9113–9116.
18. (a) Guan, Y.; Wu, J.; Sun, L.; Dai, W.-M. J. Org. Chem. 2007, 72, 4953–4960; (b)
Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.; Yoshida, T.; Murase, H.;
Nakata, M.; Matsumura, S. J. Org. Chem. 1997, 62, 3271–3284.
an additional 91.0 mg of the acid 18. The acid 18 was obtained
20
(319.0 mg, 90%) as a colorless oil. [
a
]
þ11.9 (c 4.3, CH2Cl2); lit.5b
D
23
[
a]
þ8.4 (c 4.5, CH2Cl2); Rf¼0.25 (25% EtOAc in PE); IR (film) 3076,
D
2937, 1705, 1464, 1235, 1091 cmꢁ1
;
1H NMR (400 MHz, CDCl3)
d
5.84–5.74 (m, 1H), 5.07 (dd, J¼17.6, 2.0 Hz, 1H), 5.03 (d, J¼10.2 Hz,
1H), 4.11 (quintet, J¼6.8 Hz, 1H), 3.87–3.82 (m, 1H), 2.49–2.40 (m,
1H), 2.37–2.29 (m, 1H), 2.27–2.14 (m, 2H), 1.80–1.63 (m, 3H), 1.53–
1.22 (m, 7H), 1.16 (d, J¼7.2 Hz, 3H), 0.89 (d, J¼7.2 Hz, 3H) (The acidic
proton is not seen.); 13C NMR (100 MHz, CDCl3)
d 182.7, 135.0, 116.8,
´
19. (a) Lakanen, J. R.; Pegg, A. E.; Coward, J. K. J. Med. Chem.1995, 38, 2714–2727; (b) Perez,
81.3, 76.0, 40.9, 39.3, 39.2, 35.8, 33.5, 30.2, 27.3, 26.5, 16.8, 14.0; MS
(ꢁESI) m/z (relative intensity) 253 (MꢁH, 100), 254 (M, 11); HRMS
(þESI) calcd for C15H26O3Naþ (MþNaþ) 277.1774, found 277.1776.
M.; Canoa, P.; Go´mez, G.; Tera´n, C.; Fall, Y. Tetrahedron Lett. 2004, 45, 5207–5209.
20. Freeman, F.; Kim, D. S. H. L. J. Org. Chem. 1992, 57, 1722–1727.
21. (a) Heckrodt, T. J.; Mulzer, J. Synthesis 2002, 1857–1866; (b) Bailey, W. F.;
Punzalan, E. R. J. Org. Chem. 1990, 55, 5404–5406.
22. (a) Kiddle, J. J. Tetrahedron Lett. 2000, 41, 1339–1341; (b) Dai, W.-M.; Wu, A.;
Wu, H. Tetrahedron: Asymmetry 2002, 13, 2187–2191.
Acknowledgements
23. Williams, D. R.; Meyer, K. G. J. Am. Chem. Soc. 2001, 123, 765–766.
24. (a) Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899; (b) Frigerio, M.; Santa-
gostino, M.; Sputore, S. J. Org. Chem. 1999, 64, 4537–4538.
25. Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693–2698.
26. Heckrodt, T. J.; Mulzer, J. Synthesis 2002, 1857–1866.
The Laboratory of Asymmetric Catalysis and Synthesis is estab-
lished under the Cheung Kong Scholars Program of The Ministry of
Education of China. This work is supported in part by the research