Journal of the American Chemical Society
Page 4 of 5
40, 4902-4911; (c) Gutekunst, W. R.; Baran, P. S., Chem. Soc. Rev.
that of the enantioselective reaction of related isopropy-
larylsilanes. This application demonstrates the potential to
use the silylation to control diastereoselectivity for the di-
versification of analogues of biologically active compounds
by late-stage, C-H bond functionalization.
To gain insight into the mechanism of the reaction, we
determined the kinetic isotopic effect (KIE) of separate
reactions of protiated (1a) and deuterated (1a-d6) substrates
(eq 2). A KIE of 1.9 ± 0.1 was obtained from this set of
experiments. This value is similar to that observed in our
previous Ir-catalyzed silylation of secondary C(sp3)-H
bonds (2.0 ± 0.1)7h and Rh-catalyzed silylation of cyclo-
propyl C-H bonds (2.1 ± 0.1)14 and implies that C-H cleav-
age is likely the rate-determining step of the reaction.19
2011, 40, 1976-1991; (d) McMurray, L.; O'Hara, F.; Gaunt, M. J.,
Chem. Soc. Rev. 2011, 40, 1885-1898; (e) Yamaguchi, J.; Yamaguchi,
A. D.; Itami, K., Angew. Chem. Int. Ed. 2012, 51, 8960-9009; (f)
Rouquet, G.; Chatani, N., Angew. Chem. Int. Ed. 2013, 52, 11726-
11743; (g) Girard, S. A.; Knauber, T.; Li, C.-J., Angew. Chem. Int.
Ed. 2014, 53, 74-100; (h) Hartwig, J. F.; Larsen, M. A., ACS Central
Science 2016, 2, 281-292; (i) Davies, H. M. L.; Du Bois, J.; Yu, J.-Q.,
Chem. Soc. Rev. 2011, 40, 1855-1856; (j) He, J.; Wasa, M.; Chan, K.
S. L.; Shao, Q.; Yu, J.-Q., Chem. Rev. 2017, 117, 8754-8786.
7. (a) Kakiuchi, F.; Tsuchiya, K.; Matsumoto, M.; Mizushima, E.;
Chatani, N., J. Am. Chem. Soc. 2004, 126, 12792-12793; (b) Tsukada,
N.; Hartwig, J. F., J. Am. Chem. Soc. 2005, 127, 5022-5023; (c) Ihara,
H.; Suginome, M., J. Am. Chem. Soc. 2009, 131, 7502-7503; (d)
Kuznetsov, A.; Gevorgyan, V., Org. Lett. 2012, 14, 914-917; (e)
Kuznetsov, A.; Onishi, Y.; Inamoto, Y.; Gevorgyan, V., Org. Lett.
2013, 15, 2498-2501; (f) Cheng, C.; Hartwig, J. F., J. Am. Chem. Soc.
2014, 137, 592-595; (g) Kanyiva, K. S.; Kuninobu, Y.; Kanai, M.,
Org. Lett. 2014, 16, 1968-1971; (h) Li, B.; Driess, M.; Hartwig, J. F.,
J. Am. Chem. Soc. 2014, 136, 6586-6589; (i) Li, Q.; Driess, M.;
Hartwig, J. F., Angew. Chem., Int. Ed. 2014, 53, 8471-8474; (j) Xiao,
Q.; Meng, X.; Kanai, M.; Kuninobu, Y., Angew. Chem. Int. Ed. 2014,
53, 3168-3172; (k) Hua, Y.; Jung, S.; Roh, J.; Jeon, J., J. Org. Chem.
2015, 80, 4661-4671; (l) Hua, Y.; Asgari, P.; Avullala, T.; Jeon, J., J.
Am. Chem. Soc. 2016, 138, 7982-7991; (m) Li, W.; Huang, X.; You,
J., Org. Lett. 2016, 18, 666-668; (n) Ghavtadze, N.; Melkonyan, F. S.;
Gulevich, A. V.; Huang, C.; Gevorgyan, V., Nat Chem 2014, 6, 122-
125.
8. (a) Furukawa, S.; Kobayashi, J.; Kawashima, T., J. Am. Chem.
Soc. 2009, 131, 14192-14193; (b) Toutov, A. A.; Liu, W.-B.; Betz, K.
N.; Fedorov, A.; Stoltz, B. M.; Grubbs, R. H., Nature 2015, 518, 80-
84; (c) Chen, Q.-A.; Klare, H. F. T.; Oestreich, M., J. Am. Chem. Soc.
2016, 138, 7868-7871; (d) Ma, Y.; Wang, B.; Zhang, L.; Hou, Z., J.
Am. Chem. Soc. 2016, 138; (e) Yin, Q.; Klare, H. F. T.; Oestreich, M.,
Angew. Chem. Int. Ed. 2016, 55, 3204-3207.
9. (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q.,
Chem. Soc. Rev. 2009, 38, 3242-3272; (b) Newton, C. G.; Wang, S.-
G.; Oliveira, C. C.; Cramer, N., Chem. Rev. 2017, 117, 8908-8976; (c)
Nakanishi, M.; Katayev, D.; Besnard, C.; Kündig, E. P., Angew.
Chem. Int. Ed. 2011, 50, 7438-7441; (d) Shi, B.-F.; Maugel, N.;
Zhang, Y.-H.; Yu, J.-Q., Angew. Chem. Int. Ed. 2008, 47, 4882-4886;
(e) Albicker, M. R.; Cramer, N., Angew. Chem., Int. Ed. 2009, 48,
9139-9142; (f) Würtz, S.; Lohre, C.; Fröhlich, R.; Bergander, K.;
Glorius, F., J. Am. Chem. Soc. 2009, 131, 8344-8345.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
CD3
[Ir(cod)OMe]2 (6 mol %)
CD3
L4 (13 mol %)
CD3
D
or
(2)
or
SiH
nbe (1.2 equiv)
C6D6
kH/kD = 1.9 ± 0.1
D
Si
Si
SiH
1a
1a-d6
2a-d5
2a
In summary, we have developed a system for highly
enantioselective silylations of unactivated C(sp3)-H bonds.
The silylation reaction is catalyzed by a combination of
[Ir(cod)OMe]2 and chiral pyridyl oxazoline ligands and
occurs in high yields and excellent enantioselectivity with
substrates containing a wide range of functional groups.
The C-Si bond in the enantioenriched dihydrobenzosiloles
can be transformed to various functionalities, such as a
hydroxyl group, or a chloride, bromide or iodide. Sequen-
tial silylations of C(sp3)-H and C(sp2)-H bonds and func-
tionalizations, as well as diastereoselective silylations show
the potential of this process for diverse synthetic applica-
tions. Preliminary mechanistic studies suggest that C-H
activation is likely the rate-determining step. Further stud-
ies of the scope and mechanism of the enantioselective
silylation of C-H bonds are underway in our lab.
ASSOCIATED CONTENT
Experimental procedures, spectra for all new compounds.
This material is available free of charge via the Internet at
10. Kuninobu, Y.; Yamauchi, K.; Tamura, N.; Seiki, T.; Takai,
K., Angew. Chem., Int. Ed. 2013, 52, 1520-1522.
11. (a) Murai, M.; Matsumoto, K.; Takeuchi, Y.; Takai, K., Org.
Lett. 2015, 17, 3102-3105; (b) Murai, M.; Takeshima, H.; Morita, H.;
Kuninobu, Y.; Takai, K., J. Org. Chem. 2015, 80, 5407-5414; (c)
Shibata, T.; Shizuno, T.; Sasaki, T., Chem. Commun. 2015, 51, 7802-
7804; (d) Zhang, Q.-W.; An, K.; Liu, L.-C.; Yue, Y.; He, W., Angew.
Chem. Int. Ed. 2015, 54, 6918-6921.
12. Zhang, Q.-W.; An, K.; Liu, L.-C.; Zhang, Q.; Guo, H.; He,
W., Angew. Chem. Int. Ed. 2017, 56, 1125-1129.
13. Lee, T.; Wilson, T. W.; Berg, R.; Ryberg, P.; Hartwig, J. F.,
J. Am. Chem. Soc. 2015, 137, 6742-6745.
14. Lee, T.; Hartwig, J. F., Angew. Chem. Int. Ed. 2016, 55,
8723-8727.
15. Su, B.; Zhou, T.-G.; Li, X.-W.; Shao, X.-R.; Xu, P.-L.; Wu,
W.-L.; Hartwig, J. F.; Shi, Z.-J., Angew. Chem. Int. Ed. 2017, 56,
1092-1096.
16. Wu, Q.-F.; Shen, P.-X.; He, J.; Wang, X.-B.; Zhang, F.; Shao,
Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J.-Q.,
Science 2017, 355, 499-503.
17. Chen, J.; Cheng, B.; Cao, M.; Lu, Z., Angew. Chem. Int. Ed.
2015, 54, 4661-4664.
AUTHOR INFORMATION
Corresponding Author
Acknowledgement
We thank the NIH (GM-115812) for support.
REFERENCES
1. (a) Denmark, S. E.; Sweis, R. F., In Metal-Catalyzed Cross-
Coupling Reactions, 2 nd ed.; De Meijere, A.; Diederich, F., Eds.
Wiley-VCH: Weinheim, 2004; Vol. 1, pp 163-216; (b) Hartwig, J. F.,
Acc. Chem. Res. 2012, 45, 864-873; (c) Cheng, C.; Hartwig, J. F.,
Chem. Rev. 2015, 115, 8946-8975.
2. Jones, R. G.; Ando, W.; Chojnowski, J., Silicon-Containing
Polymers. . Springer: Berlin, 2000.
3. Cash, G. G., Pestic. Sci. 1997, 49, 29-34.
4. (a) Franz, A. K., Curr. Opin. Drug Discovery Dev. 2007, 654;
(b) Franz, A. K.; Wilson, S. O., J. Med. Chem. 2013, 56, 388-405.
5. Patai, S.; Rappoport, Z., The Chemistry of Organic Silicon
Compounds. Wiley & Sons: New York, 2000.
6. (a) Yu, J.-Q.; Shi, Z.-J., Topics in Current Chemistry. Springer:
Heidelberg, 2010; Vol. 292; (b) Baudoin, O., Chem. Soc. Rev. 2011,
18. Esteves, M. A.; Narender, N.; Gigante, B.; Marcelo-curto, M.
J.; Alvarez, F., Synth. Commun. 1999, 29, 275-280.
19. Simmons, E. M.; Hartwig, J. F., Angew. Chem. Int. Ed. 2012,
51, 3066-3072.
ACS Paragon Plus Environment