N. D. Abeydeera, C. S. Chow / Bioorg. Med. Chem. 17 (2009) 5887–5893
5893
4.4. RNA deprotection and purification
References and notes
1. Brimacombe, R.; Mitchell, P.; Osswald, M.; Stade, K.; Bochkariov, D. FASEB J.
1993, 7, 161.
2. Agris, P. F. Prog. Nucleic Acid Res. 1996, 53, 79.
Upon completion of coupling on an automated synthesizer, the
CPG-boundRNA was cleavedfrom the solid support and deprotected
with 1:3 (v/v) EtOH/NH4OH and TBAF (tetrabutylammonium fluo-
3. Decatur, W. A.; Fournier, M. J. Trends Biochem. Sci. 2002, 27, 344.
4. Chow, C. S.; Lamichhane, T. N.; Mahto, S. K. ACS Chem. Biol. 2007, 2, 610.
5. Cunningham, P. R.; Richard, R. B.; Weitzmann, C. J.; Nurse, K.; Ofengand, J.
Biochimie 1991, 73, 789.
6. Denman, R.; Weitzmann, C.; Cunningham, P. R.; Negre, D.; Nurse, K.; Colgan, J.;
Pan, Y. C.; Miedel, M.; Ofengand, J. Biochemistry 1989, 28, 1002.
7. Denman, R.; Negre, D.; Cunningham, P. R.; Nurse, K.; Colgan, J.; Weitzmann, C.;
Ofengand, J. Biochemistry 1989, 28, 1012.
29,39
ride solution, 1 M in THF) as described in the literature.
The
RNAs were desalted over Poly-Pak II cartridges (Glen Research), then
purified by HPLC on an XTerra MS C18 column (2.5
m, 10 ꢂ 50 mm,
l
Waters) in which the eluent was 0.1 M TEAA (triethylammonium
acetate) buffer, pH 7.0, with a 5–15% linear gradient of acetonitrile
over 25 min at a flow rate of 4.0 mL/min. After HPLC purification,
each oligomer was further desalted by ethanol precipitation and
dialysis for 3 days against RNase-free, deionized water using a
1000 molecular weight cut-off membrane (Spectra-Por). RNA con-
centrations were calculated using Beer’s law and a single-stranded
8. Green, R.; Noller, H. F. RNA 1996, 2, 1011.
9. Starr, J. L.; Fefferman, R. J. Biol. Chem. 1964, 239, 3457.
10. Ehresmann, C.; Stiegler, P.; Mackie, G. A.; Zimmermann, R. A.; Ebel, J. P.; Fellner,
P. Nucleic Acids Res. 1975, 2, 265.
11. Ehresmann, C.; Stiegler, P.; Fellner, P.; Ebel, J. P. Biochimie 1975, 57, 711.
12. Yusupov, M. M.; Yusupova, G. Z.; Baucom, A.; Lieberman, K.; Earnest, T. N.;
Cate, J. H.; Noller, H. F. Science 2001, 292, 883.
13. Aduri, R.; Psciuk, B. T.; Saro, P.; Taniga, H.; Schlegel, H. B.; SantaLucia, J. J. Chem.
Theory Comput. 2007, 3, 1464.
14. Doring, T.; Mitchell, P.; Osswald, M.; Bochkariov, D.; Brimacombe, R. EMBO J.
1994, 13, 2677.
extinctioncoefficient(e . Thesameextinction
)of176,900 Mꢁ1 cmꢁ1 40
coefficients were used for guanosine and m2G (1.4 ꢂ 104 Mꢁ1 cmꢁ1
at pH 7.0) and cytidine and m5C (9.1 ꢂ 103 Mꢁ1 cmꢁ1 at pH 7.0).
15. Selmer, M.; Dunham, C. M.; Murphy, F. V., IV; Weixlbaumer, A.; Petry, S.;
Kelley, A. C.; Weir, J. R.; Ramakrishnan, V. Science 2006, 313, 1935.
16. Korostelev, A.; Trakhanov, S.; Laurberg, M.; Noller, H. F. Cell 2006, 126, 1065.
17. Berk, V.; Zhang, W.; Pai, R. D.; Cate, J. H. D. Proc. Natl. Acad. Sci. U.S.A. 2006, 103,
15830.
18. Cannone, J. J.; Subramanian, S.; Schnare, M. N.; Collett, J. R.; D’Souza, L. M.; Du,
Y.; Feng, B.; Lin, N.; Madabusi, L. V.; Müller, K. M.; Pande, N.; Shang, Z.; Yu, N.;
Gutell, R. R. BMC Bioinformatics 2002, 3, 2.
19. Jemiolo, D. K.; Taurence, J. S.; Giese, S. Nucleic Acids Res. 1991, 19, 4259.
20. Lesnyak, D. V.; Osipiuk, J.; Skarina, T.; Sergiev, P. V.; Bogdanov, A. A.; Edwards,
A.; Savchenko, A.; Joachimiak, A.; Dontsova, O. A. J. Biol. Chem. 2007, 282, 5880.
21. Saraiya, A. A.; Lamichhane, T. N.; Chow, C. S.; SantaLucia, J., Jr.; Cunningham, P.
R. J. Mol. Biol. 2008, 376, 645.
4.5. UV melting studies
The absorbance versus temperature profiles were obtained on
an Aviv 14DS UV–vis spectrophotometer with a five-cuvette ther-
moelectric controller. Microcuvettes with two different path-
lengths, 0.1 and 0.2 cm (60 and 120 lL volumes, respectively),
were employed. Each measurement was taken in triplicate. The
buffer used in each experiment contained 15 mM NaCl, 20 mM so-
dium cacodylate, and 0.5 mM Na2EDTA (pH 7.0), unless noted
otherwise. Each oligomer was dissolved in a specific volume to
yield an absorbance reading just below 2.0 in a 0.1 cm pathlength
cuvette. The RNA concentrations were determined from the absor-
bance values (260 nm) at 95 °C. The absorbance data were col-
lected at 280 nm from 0 to 95 °C with a constant heating rate of
0.5 °C/min.41 Thermodynamic parameters were obtained from
the absorbance versus temperature profiles using the MELTWIN v.
3.5 melting curve program.33 This program performs a van’t Hoff
analysis, assuming a two-state model for the transition between
a native and a denatured (random coil) structure of a hairpin loop.
22. Brodersen, D. E.; Clemons, W. M., Jr.; Carter, A. P.; Wimberly, B. T.;
Ramakrishnan, V. J. Mol. Biol. 2002, 316, 725.
23. Schuwirth, B. S.; Borovinskaya, M. A.; Hau, C. W.; Zhang, W.; Vila-Sanjurjo, A.;
Holton, J. M.; Cate, J. H. D. Science 2005, 310, 827.
24. Moazed, D.; Noller, H. F. J. Mol. Biol. 1990, 211, 135.
25. Selmer, M.; Dunham, C. M.; Murphy, F. V. t.; Weixlbaumer, A.; Petry, S.; Kelley,
A. C.; Weir, J. R.; Ramakrishnan, V. Science 2006, 313, 1935.
26. Baxter-Roshek, J. L.; Petrov, A. N.; Dinman, J. D. PLoS ONE 2007, 2, e174.
27. Matsuda, A.; Shinozaki, M.; Suzuki, M.; Watanabe, K.; Miyasaka, T. Synthesis-
Stuttgart 1986, 385.
28. Bridson, P. K.; Reese, C. B. Bioorg. Chem. 1979, 8, 339.
29. Kamimura, T.; Tsuchiya, M.; Urakami, K.; Koura, K.; Sekine, M.; Shinozaki, K.;
Miura, K.; Hata, T. J. Am. Chem. Soc. 1984, 106, 4552.
30. Koizumi, M.; Akahori, K.; Ohmine, T.; Tsutsumi, S.; Sone, J.; Kosaka, T.; Kaneko,
M.; Kimura, S.; Shimada, K. Bioorg. Med. Chem. Lett. 2000, 10, 2213.
31. Höbartner, C.; Kreutz, C.; Flecker, E.; Ottenschläger, E.; Pils, W.; Grubmayr, K.;
Micura, R. Monatsh. Chem. 2003, 134, 851.
32. Boudou, V.; Langridge, J.; Van Aerschot, A.; Hendrix, C.; Millar, A.; Weiss, P.;
Herdewijn, P. Helv. Chim. Acta 2000, 83, 152.
33. McDowell, J. A.; Turner, D. H. Biochemistry 1996, 35, 14077.
34. SantaLucia, J., Jr.; Kierzek, R.; Turner, D. H. Science 1992, 256, 217.
35. Tinoco, I., Jr.; Sauer, K.; Wang, J. C. Physical Chemistry, Principles and Applications
in Biological Sciences. Prentice-Hall: Englewood Cliffs, NJ, 1985.
36. Gromadski, K. B.; Daviter, T.; Rodnina, M. V. Mol. Cell 2006, 21, 369.
37. Fahlman, R. P.; Dale, T.; Uhlenbeck, O. C. Mol. Cell 2004, 16, 799.
38. Kemal, O.; Reese, C. B. Synthesis 1980, 12, 1025.
4.6. Circular dichroism (CD) spectroscopy
CD spectra were obtained on an Applied Photophysics Chirascan
circular dichroism spectrometer (220–320 nm) at 25 °C in 15 mM
NaCl, 20 mM sodium cacodylate, and 0.5 mM Na2EDTA at pH 7.0.
The RNA concentrations were maintained at 2.5–3.0
CD experiments. Based on the RNA strand concentration, the mea-
sured CD spectra were converted to molar ellipticity (
),42 which
lM for all
D
e
denotes the moles of RNA molecules rather than moles of individ-
ual residues present in the sequence.
39. Pitsch, S.; Weiss, P. A.; Jenny, L.; Stutz, A.; Wu, X. Helv. Chim. Acta 2001, 84,
3773.
Acknowledgments
40. Richards, E. G. In Handbook of Biochemistry and Molecular Biology; CRC Press:
Cleveland, OH, 1975; p 596.
41. SantaLucia, J., Jr. In Spectrometry and Spectrofluorometry; Gore, M. G., Ed.;
Oxford University Press: Oxford, UK, 2000; p. 329.
42. Cantor, C. R., Schimmel, P. R. In Biophysical Chemistry. Part II; W. H. Freeman
and Co.: San Francisco, CA, 1980; p 412.
We thank Tek Lamichhane, John SantaLucia, and Philip Cunn-
ingham for helpful discussions and Lew Hryhorczuk, Andrew Feig,
and Norman Watkins for technical assistance. This work was sup-
ported by the National Institutes of Health (AI061192).
43. SantaLucia, J., Jr.; Turner, D. H. Biopolymers 1997, 44, 309.
Supplementary data
Supplementary data associated with this article can be found, in