carbamoyl chlorides derived from 2-alkynylanilines,10 and
Pd- or Rh-catalyzed cyclizations of 2-alkynylaryl isocyanates
in the presence of an external nucleophile.11,12
Scheme 1. Routes toward 3-(Aminomethylene)oxindoles
Substituted 3-methyleneoxindoles in which the exocyclic
alkene is substituted by a heteroatom also constitute an
important class of functionalized oxindoles, especially
3-(aminomethylene)oxindoles which have been identified as
protein kinases inhibitors.13 Several strategies have been
developed to synthesize this class of oxindoles of type
A. One of the most straightforward route involves the
reaction of amines with enol ethers derived from 3-acyl-
oxindoles B. The latter compounds are usually prepared by
condensation of oxindoles C with activated acyl derivatives
or orthoesters.13 Another route to 3-acyloxindoles B capital-
izes on the copper-catalyzed intramolecular arylation of
ꢀ-keto amides D.14 Metal-catalyzed reactions that allow
access to 3-methyleneoxindoles bearing alkyl or aryl sub-
stituents on the exocyclic alkene have been successfully
extended to some classes of nitrogen nucleophiles. Thus, in
the presence of phthalimide (PhtNH), a catalytic amount of
Pd(OAc)2, and PhI(OAc)2, R,ꢀ-acetylenic amides E undergo
syn-amino-palladation, followed by arene C-H bond activa-
tion and reductive elimination, leading to 3-(aminomethyl-
ene)oxindoles A.15 Pd-catalyzed cyclizations involving 2-alky-
nylaryl isocyanates F with amides, carbamates, or sulfonamides
as external nucleophiles have also been recently reported.16
Another class of potential precursors to oxindoles of type A
are 3-(chloromethylene)oxindoles G, which have been
Herein, we report a new route toward 3-(chloromethyl-
ene)oxindoles G relying on the iron trichloride-promoted
cationic cyclization of 2-alkynylaryl isocyanates. Addition-
ally, straightforward conditions for their subsequent stereo-
selective transformation into 3-(aminomethylene)oxindoles
have been developed.
In our retrosynthetic analysis, the formation of the exo-
cyclic double bond in 3-(arylchloromethylene)oxindoles of
type G′ was envisaged by addition of a chloride ion to a
developing vinylic carbocation resulting from the nucleo-
philic attack of the alkyne onto an imidoyl cation I. The
latter species would be generated by activation of isocyanates
F with a Lewis acidic metal salt (MCln) (Scheme 2).
prepared by chlorination of 3-acyloxindoles B.13,17
A
complementary route from 2-alkynylanilines, involving a
chloropalladation-carbonylation sequence (cat. PdCl2,
excess CuCl2, CO atmosphere), has also been described
(Scheme 1).18
Scheme 2. Synthesis of 3-(Arylchloromethylene)oxindoles
(9) (a) Hirao, K.; Morii, N.; Joh, T.; Takahashi, S. Tetrahedron Lett.
1995, 36, 6243–6246. (b) Park, J. H.; Kim, E.; Chung, Y. K. Org. Lett.
2008, 10, 4719–4721.
(10) Fielding, M. R.; Grigg, R.; Urch, C. J. Chem. Commun. 2000, 2239–
2240.
(11) (a) Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2007, 9,
5075–5077. (b) Miura, T.; Takahashi, Y.; Murakami, M. Org. Lett. 2008,
10, 1743–1745
(12) Kamijo, S.; Sasaki, Y.; Kanazawa, C.; Schu¨sseler, T.; Yamamoto,
Y. Angew. Chem., Int. Ed. 2005, 44, 7718–7721
.
.
Activation of isocyanates by Lewis or protic acids has been
(13) (a) Treu, M.; Guertler, U.; Karner, T. Kraemer, O.; Quant, J. J.;
Zahn, S. K. (Boehringer Ingelheim Int.) WO 200815 2013 A1, Dec 18,
2008. (b) Treu, M.; Mantoulidis, A.; Tontsch-Grunt, U. (Boehringer
Ingelheim Int.) WO2007122219 A1, Nov 1, 2007. (c) Heckel, A.; Roth,
G. J.; Joerg, K.; Hoerer, S.; Uphues, I. (Boehringer Ingelheim Int.)
US20050203104 A1, Sep 15, 2005. (d) Burgdorf, L. T.; Bruge, D.; Greiner,
H.; Kordowicz, M.; Sirrenberg, C.; Zenke, F. (Merck Patent) WO2006131186
A1, Dec 2006,14. (e) Kley, J.; Heckel, A.; Hilberg, F.; Roth, G. J.; Lehmann-
Lintz, T.; Lotz, R. R. H.; Tontsch-Grunt, U.; Van Meel, J. C. A. (Boehringer
Ingelheim Pharma) WO2004026829 A2, April 2004, 1.
used in modified Bischler-Napieralski reactions,19 but to
(19) For examples, see: (a) Varney, M. D.; Marzoni, G. P.; Palmer, C. L.;
Deal, J. G.; Webber, S.; Welsh, K. M.; Bacquet, R. J.; Bartlett, C. A.; Morse,
C. A.; Booth, C. L. J.; Herrmann, S. M.; Howland, E. F.; Ward, R. W.;
White, J. J. Med. Chem. 1992, 35, 663–676. (b) Smith, A. B., III.; Cantin,
L.-D.; Pasternak, A.; Guise-Zawacki, L.; Yao, W.; Charnley, A. K.; Barbosa,
J.; Sprengeler, P. A.; Hirschmann, R.; Munshi, S.; Olsen, D. B.; Schleif,
W. A.; Kuo, L. C. J. Med. Chem. 2003, 46, 1831–1844. (c) Afarinkia, K.;
Ndibwami, A. Synlett 2007, 1940–1944. (d) Hanessian, S.; Demont, E.;
van Otterlo, W. A. L. Tetrahedron Lett. 2000, 41, 4999–5003. (e) Ohta, S.;
Kimoto, S. Chem. Pharm. Bull. 1976, 24, 2969–2976. (f) Bala´zs, L.;
Nyerges, M.; Ka´das, I.; To˝ke, L. Synthesis 1995, 1373–1375. (g) Umezawa,
B.; Hoshino, O.; Sawaki, S.; Mori, K. Chem. Pharm. Bull. 1980, 28, 1003–
1005. (h) Fevig, T. L.; Bowen, S. M.; Janowick, D. A.; Jones, B. K.;
Munson, H. R.; Ohlwiler, D. F.; Thomas, C. E. J. Med. Chem. 1996, 39,
4988–4996. (i) Irie, H.; Shiina, A.; Fushimi, T.; Katakawa, J.; Fujii, N.;
Yajima, H. Chem. Lett. 1980, 875–878. (j) Katakawa, J.; Yoshimatsu, H.;
Yoshida, M.; Zhang, Y.; Irie, H.; Yajima, H. Chem. Pharm. Bull. 1988,
36, 3928–3932. (k) Anderson, W. K.; Heider, A. R.; Raju, N.; Yucht, J. A.
J. Med. Chem. 1988, 31, 2097–2102.
(14) Lu, B.; Ma, D. Org. Lett. 2006, 8, 6115–6118.
(15) (a) Tang, S.; Peng, P.; Pi, S.-F.; Liang, Y.; Wang, N.-X.; Li, J.-H.
Org. Lett. 2008, 10, 1179–1182. (b) Tang, S.; Peng, P.; Wang, Z.-Q.; Tang,
B.-X.; Deng, C.-L.; Li, J.-H.; Zhong, P.; Wang, N.-X. Org. Lett. 2008, 10,
1875–1878. (c) Peng, P.; Tang, B.-X.; Pi, S.-F.; Liang, Y.; Li, J.-H. J. Org.
Chem. 2009, 74, 3569–3572.
(16) Miura, T.; Toyoshima, T.; Takahashi, Y.; Murakami, M. Org. Lett.
2009, 11, 2141–2143.
(17) (a) Beccalli, E. M.; Marchesini, A.; Pilati, T. Tetrahedron 1994,
50, 12697–12712. (b) Beccalli, E. M.; Marchesini, A. Tetrahedron 1995,
51, 2353–2362
.
(18) Tang, S.; Yu, Q.-F.; Peng, P.; Li, J.-H.; Zhong, P.; Tang, R.-Y.
Org. Lett. 2007, 9, 3413–3416.
Org. Lett., Vol. 11, No. 19, 2009
4263