+
account for the less reactive fraction of the [RGYALG + H]ꢀ
5 D. S. Masterson, H. Y. Yin, A. Chacon, D. L. Hachey, J. L. Norris
and N. A. Porter, J. Am. Chem. Soc., 2004, 126, 720–721.
6 S. Wee, A. Mortimer, D. Moran, A. Wright, C. K. Barlow,
R. A. J. O’Hair, L. Radom and C. J. Easton, Chem. Commun.,
2006, 4233–4235.
7 J. Laskin, Z. B. Yang, C. Lam and I. K. Chu, Anal. Chem., 2007,
79, 6607–6614.
8 C. K. Barlow, S. Wee, W. D. McFadyen and R. A. J. O’Hair,
J. Chem. Soc., Dalton Trans., 2004, 3199–3204.
ion population. Indeed, the authentic a-radicals (at least
initially), formed by collision-induced side-chain cleavage,
are substantially less reactive or unreactive with O2 (see ESIw).
We therefore conclude that following photodissociation of
the C–I bond on the iodinated tyrosine residue, the radical
does not remain localised at the 3-position but rather migrates
to one or more locations throughout the peptide. Similar
behaviour is observed for the reaction of the angiotensin
9 I. K. Chu, T. Shoeib, X. Guo, C. F. Rodriquez, T. C. Lan,
A. C. Hopkinson and K. W. M. Siu, J. Am. Soc. Mass Spectrom.,
2001, 12, 163–175.
+
radical cation [DRVYIHPF + H]ꢀ (Fig. 2b) and even
10 I. K. Chu, C. F. Rodriguez, F. Rodriguez, A. C. Hopkinson and
K. W. M. Siu, J. Am. Soc. Mass Spectrom., 2001, 12, 1114–1119.
11 C. L. Kalcic, T. C. Gunaratne, A. D. Jones, M. Dantus and
G. E. Reid, J. Am. Chem. Soc, 2009, 131, 940–942.
12 I. K. Chu, J. Zhao, M. Xu, S. O. Siu, A. C. Hopkinson and
K. W. M. Siu, J. Am. Chem. Soc., 2008, 130, 7862–7872.
13 S. Panja, S. B. Nielsen, P. Hvelplund and F. Turecek, J. Am. Soc.
Mass Spectrom., 2008, 19, 1726–1742.
14 L. Jing, J. J. Nash and H. I. Kenttamaa, J. Am. Chem. Soc., 2008,
130, 17697–17709.
15 F. Turecek and E. A. Syrstad, J. Am. Chem. Soc., 2003, 125,
3353–3369.
16 T. Ly and R. R. Julian, J. Am. Soc. Mass Spectrom., 2009, 20,
1148–1158.
17 N. Leymarie, C. E. Costello and P. B. O’Connor, J. Am. Chem.
Soc., 2003, 125, 8949–8958.
18 M. M. Savitski, F. Kjeldsen, M. L. Nielsen and R. A. Zubarev,
J. Am. Soc. Mass Spectrom., 2007, 18, 113–120.
19 M. N. Eberlin, J. Mass Spectrom., 2006, 41, 141–156.
for multiply charged ubiquitin (Fig. 2c). The presence of
[M + O2]+ adduct ions in these spectra is indicative of the
presence of radicals at sites remote from the initial location on
tyrosine.
Interestingly, the spectra shown in Fig. 2a–c also reveal
significant amounts of side-chain fragmentation similar to
pathways previously described for the CID of peptide
radicals,34 e.g., the loss of the isobutene (À56 Da) from
the leucine side-chain in Fig. 2a. Furthermore, these frag-
mentation pathways reveal a time-dependence (see ESIw)
and appear to be independent of the concentration of
dioxygen (the latter was established by comparing the
[RGYALG + O2]ꢀ and [RGYALG À 56]ꢀ+ ion abundances
+
while varying the availability of air in the electrospray source
region). These observations suggest that fast migration of the
radical away from the tyrosine residue may be followed by
subsequent slow unimolecular rearrangements, some of which
give rise to side-chain fragmentation.
20 K. M. Stirk, L. K. M. Kiminkinen and H. I. Kenttamaa, Chem.
Rev., 1992, 92, 1649–1665.
¨
21 H. Kenttamaa, in Encyclopedia of Mass Spectrometry, ed. N. M. M.
¨
Nibbering, Elsevier, Amsterdam, 2005, vol. 4 pp. 160–164.
22 D. M. Tomazela, A. A. Sabino, R. Sparrapan, F. C. Gozzo and
M. N. Eberlin, J. Am. Soc. Mass Spectrom., 2006, 17, 1014–1022.
23 B. F. Yates, W. J. Bouma and L. Radom, Tetrahedron, 1986, 42,
6225–6234.
24 B. F. Yates, W. J. Bouma and L. Radom, J. Am. Chem. Soc., 1984,
106, 5805–5808.
25 D. G. Harman and S. J. Blanksby, Org. Biomol. Chem., 2007, 5,
3495–3503.
The results presented herein unambiguously demonstrate
that radical migration can occur in large peptides without the
addition of significant activation energy. The possibility for
facile radical migration must therefore be considered in
fragmentation experiments where radical peptides are
generated. If needed, ion–molecule reactions such as those
demonstrated above can provide a facile route to monitor
radical migration in peptides.
26 D. G. Harman and S. J. Blanksby, Chem. Commun., 2006, 859–861.
27 A. Sorrilha, F. C. Gozzo, R. S. Pimpim and M. N. Eberlin, J. Am.
Soc. Mass Spectrom., 1996, 7, 1126–1137.
S. J. B. acknowledges funding from the Australian Research
Council (DP0986738). R. R. J. acknowledges funding from the
National Science Foundation (CHE-0747481).
28 S. J. Yu, C. L. Holliman, D. L. Rempel and M. L. Gross, J. Am.
Chem. Soc., 1993, 115, 9676–9682.
29 Y. Xia, P. A. Chrisman, S. J. Pitteri, D. E. Erickson and
S. A. McLuckey, J. Am. Chem. Soc., 2006, 128, 11792–11798.
30 J. F. Zhao, T. Shoeib, K. W. M. Siu and A. C. Hopkinson, Int. J.
Mass Spectrom., 2006, 255, 265–278.
31 H. Lioe and R. A. J. O’Hair, Org. Biomol. Chem., 2005, 3,
3618–3628.
32 E. I. Solomon, U. M. Sundaram and T. E. Machonkin, Chem.
Rev., 1996, 96, 2563–2605.
Notes and references
1 J. E. P. Syka, J. J. Coon, M. J. Schroeder, J. Shabanowitz and
D. F. Hunt, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 9528–9533.
2 R. A. Zubarev, N. L. Kelleher and F. W. McLafferty, J. Am.
Chem. Soc., 1998, 120, 3265–3266.
3 T. Ly and R. R. Julian, J. Am. Chem. Soc., 2008, 130, 351–358.
4 R. Hodyss, H. A. Cox and J. L. Beauchamp, J. Am. Chem. Soc.,
2005, 127, 12436–12437.
33 T. Inoue, Y. Shiota and K. Yoshizawa, J. Am. Chem. Soc., 2008,
130, 16890–16897.
34 Q. Sun, H. Nelson, T. Ly, B. M. Stoltz and R. R. Julian,
J. Proteome Res., 2009, 8, 958–966.
ꢁc
This journal is The Royal Society of Chemistry 2009
Chem. Commun., 2009, 5015–5017 | 5017