1230 J. Chin. Chem. Soc., Vol. 57, No. 6, 2010
Joshi et al.
water.
tuted benzimidazole in water under ultrasonic irradiation.
The advantages of this procedure are operational simplic-
ity, wide substrate scope, availability of catalyst, cost effec-
tive and high yields. In many cases, the products crystal-
lized directly from the reaction mixture in high purity. We
believe that this method presents a practical alternative to
existing procedures for the synthesis of 2-substituted benz-
imidazole.
General procedure for the synthesis of benzimidazole
A mixture of aldehyde (10 mmol), o-phenylene di-
amine (10 mmol) and TBAF (5 mol%) was dissolved in
minimum quantity of water with constant stirring. Further
the reaction mass was irradiated under ultrasonic irradia-
tion at ambient temperature for appropriate time (Table 3).
The progress of reaction was monitored by TLC. After the
completion of reaction, mixture was extract with ethyl ace-
tate (2 ´ 25 mL) and dried under vacuum. The residue was
subjected to column chromatography (60-120 mesh size
silica gel, eluted with hexane-ethyl acetate (80:20) to ob-
tain the pure product. The compounds 3(a-j) were prepared
by following the above procedure and their percentage
yield and physical constants were recorded in Table 3.
Their structures have been confirmed by 1H NMR, IR and
Mass spectra.
ACKNOWLEDGMENT
The authors are thankful to University Grants Com-
mission, New Delhi, for awarding the RFSMS Fellowship
and the Head, Department of Chemistry, Dr. Babasaheb
Ambedkar Marathwada University, Aurangabad, provida-
ing laboratory facility.
Received July 28, 2010.
Spectral data of representative compounds
Compound (3d): 1H NMR (400 MHz, DMSO-d6, d
ppm): 12.55 (br s, -NH), 8.14 (d, 2H), 7.61 (m, 1H), 7.23-
7.28 (m, 3H), 7.12-7.04 (m 2H); IR (KBr): 3053 (NH),
1682 (C=N), cm-1; MS: m/z: 229.0 (M+1), 231 (M+3);
Anal. Calcd for C13H9N2Cl: C, 68.28; H, 3.97; N, 12.25.
Found: C, 68.40; H, 3.89; N, 12.48%.
REFERENCES
1. Baliharova, V.; Skalova, L.; Mass, R. F. M.; De-Vrieze, S.
Bull, G.; Fink-Gremmels, J. J. Res. Vet. Sci. 2003, 75, 61.
2. Habib, N. S.; Soliman, R.; Ashour, F. A.; El-Taiebi, M.
Pharmazie 1997, 52, 746.
3. Wang, H.; Gupta, R.; Lown, J. W. Anticancer Drug Des.
1994, 9, 153.
Compound (3e): 1H NMR (400 MHz, DMSO-d6, d
ppm): 12.98 (s, 1H, -NH), 8.05 (d, J = 8.50 Hz, 2H), 7.29
(m, 4H), 7.17 (m, 1H); MS (EI): m/z = 213 (M+); IR (KBr,
cm-1): 3447 (NH), 1624 (C=N); Anal. Calcd C13H9FN2: C,
73.57; H, 4.27; N, 13.20. Found: C, 73.92; H, 4.48; N,
13.19%.
4. Spasov, A. A.; Yozhitsa, I. N.; Bugaeva, L. I.; Anisimova, V.
A. Pharm. Chem. J. 1999, 33, 232.
5. Kus, C.; Goker-Farm, H. Bil. Berg. 1994, 19, 23.
6. Soula, C.; Luu-Duc, C. Lyon Pharm. 1986, 37, 297.
7. Sharma, S.; Abuzar, S. Prog. Drug Res. 1983, 27, 85.
8. Mctavish, D.; Buckley, M. M. T.; Heel, R. T. Drugs 1991, 42,
138.
Compound (3h): 1H NMR (400 MHz, DMSO-d6, d
ppm): d 12.83 (br s, -NH), 8.09-8.11 (d, 1H), 7.85 (t, 1H),
7.65-7.69 (d, 1H), 7.53-7.55 (d, 1H), 7.34-7.36 (d, 2H),
7.18 (m, 2H); MS (EI): m/z = 210 (M+1); IR (KBr, cm-1):
3445 (NH), 3054, 2431, 1611 (C=N); Anal. Calcd for
C15H11N5: C, 74.62; H, 5.30; N, 20.08; Found: C, 74.82; H,
5.58; N, 20.18%.
Compound (3k): 1H NMR (400 MHz, DMSO-d6, d
ppm): 11.86 (s, 1H, -NH), 8.75 (brs, 1H), 8.39 (dd, 1H, J =
8.0 & 2.2 Hz), 8.02-790 (m, 3H), 7.26 (m, 2H, Ar-H); MS
(EI): m/z = 245 (M+1); IR (KBr, cm-1): 3055, 2925, 1654
(C=N), Anal. Calcd for C13H9FN2: C, 83.61; H, 4.92; N,
11.47; Found: C, 83.87; H, 4.88; N, 11.01%.
9. Howden, C. W. Clin. Pharmacokinetics 1991, 20, 38.
10. Massoomi, F.; Savage, J.; Destache, C. J. Pharmacotheraphy
1993, 13, 46.
11. Porai Koshits, B. A.; Ginzburg-Sh, F.; Etros, L. S. Zh.
Obshch. Khim. 1947, 17, 1768; Chem. Abstr. 1948, 42, 5903.
12. Li, X. C.; Widdop, R. E. Hypertension 1995, 26, 989.
13. (a) Grimmet, M. R.; Katritzky, A. R.; Rees, C. W. Compre-
hensive Heterocyclic Chemistry; Pergamon Press: Oxford,
1984; Vol. 5, Chap. 4.02, pp 104-105. (b) Wright, J. B. Chem.
Rev. 1951, 48, 396. (c) Middleton, R. W.; Wibberley, D. G. J.
Heterocycl. Chem. 1980, 17, 1757.
14. (a) Czarny, A.; Wilson, W. D.; Boykin, D. W. J. Heterocycl.
Chem. 1996, 33, 1393. (b) Tidwell, R. R.; Geratz, J. D.;
Dann, G.; Volz, D.; Zeh, H. J. Med. Chem. 1978, 21, 613. (c)
Fairley, T. A.; Tidwell, R. R.; Donkor, I.; Naiman, N. A.;
Ohemeng, K. A.; Lombardy, R. J.; Bentley, J. A.; Cory, M. J.
Med. Chem. 1993, 36, 1746.
CONCLUSIONS
In conclusion, the present procedure using TBAF as
catalyst provides an efficient one-pot synthesis of 2-substi-
15. (a) Bourgrin, K.; Loupy, A.; Soufiaoui, M. Tetrahedron
1998, 54, 8055. (b) Reddy, G. V.; Rao, V. V. V. N. S. R.;