1120
(8) (a) For examples, see: Davis, C. E.; Bailey, J. L.; Lockner, J.
Can. J. Chem. Vol. 87, 2009
3
2
(2H, td, JHH= 6.4 Hz, JHH= 2.8 Hz, O–CH2), 3.81 (1H, t,
3JHH= 7.2 Hz, N–CH), 4.68 (2H, s, =CH2) ppm. 13C NMR
(100 MHz, CDCl3) d: 26.3 (CH3), 26.6 (CH3), 29.5 (CH2),
33.8 (CH2), 37.1 (CH2), 43.2 (CH), 48.9 (N–CH2), 63.6 (C),
65.4 (O–CH2), 78.7 (N–CH), 115.3 (C=CH2), 150.6
(C=CH2) ppm. MS (EI, 70 eV) m/z (%): 213 (M+, 27), 156
(55), 143 (39), 114 (100), 83 (52). Anal. calcd. for
C12H23NO2 (213.3): C, 67.57; H, 10.87; N, 6.57. Found: C,
67.68; H, 10.91; N, 6.54.
W.; Coates, R. M. J. Org. Chem. 2003, 68 (1), 75–82.
doi:10.1021/jo026506c. PMID:12515464.; (b) Bochvic, B.;
Kapuscinski, J.; Olejniczak, B. Roczniki Chem. 1971, 45,
869; (c) Subbaraj, A.; Rao, O. S.; Lwowski, W. J. Org.
Chem. 1989, 54 (16), 3945–3952. doi:10.1021/jo00277a037.;
(d) Bergmeier, S. C.; Seth, P. P. Tetrahedron Lett. 1999, 40
(34), 6181–6184. doi:10.1016/S0040-4039(99)01210-1.;
(e) Parrish, E.; Nes, W. D. Synth. Commun. 1988, 18 (2),
221–226. doi:10.1080/00397918808077348.; (f) Tiecco, M.;
Testaferri, L.; Santi, C.; Tomassini, C.; Santoro, S.; Marini,
F.; Bagnoli, L.; Temperini, A. Tetrahedron 2007, 63 (50),
12373–12378. doi:10.1016/j.tet.2007.09.047.
The data for 2b
Pale orange oil, yield: 8.3 g (78%). [a]2D5 –46.3 (c1.0,
CHCl3). IR n(cm–1, KBr): 3334 (broad), 1440, 1044, 884.
1H NMR (400 MHz, CDCl3) d: 1.11 (3H, s, CH3), 1.49–
1.99 (6H, m, 3CH2), 1.73 (3H, s, CH3), 2.30 (1H, m, CH),
(9) Fractional distillation is possible but extremely inefficient:
Royals, E. E.; Leffingwell, J. C. J. Org. Chem. 1966, 31 (6),
1937–1944. doi:10.1021/jo01344a062.
3
2
2.69 (2H, td, JHH= 5.2 Hz, JHH= 2.4 Hz, N–CH2), 3.61
3
2
(10) (a) Steiner, D.; Sethofer, S. G.; Goralski, C. T.; Singaram, B.
Tetrahedron Asymmetry 2002, 13 (14), 1477–1483. doi:10.
1016/S0957-4166(02)00342-7.; (b) Chrisman, W.; Camara,
J.; Marcellini, K.; Singaram, B.; Goralski, C.; Hasha, D.;
Rudolf, P.; Nicholson, L.; Borodychuk, K. Tetrahedron Lett.
2001, 42 (34), 5805–5807. doi:10.1016/S0040-4039(01)
01135-2.; (c) Voronkov, M. V.; Kanamarlapudi, R. C.;
Richardson, P. Tetrahedron Lett. 2005, 46 (40), 6907–6910.
doi:10.1016/j.tetlet.2005.08.009.
(11) (a) Under harsh conditions, both epoxides can be opened
with dimethylamine, and the corresponding amino alcohols
can be separated by salt formation and crystallization. For
examples of this and the susbsequent conversion of the
amino alcohols back to the diastereomerically pure epoxides,
see: Baker, R.; Borges, M.; Cooke, N. G.; Herbert, R. H. J.
Chem. Soc., Chem. Commun. 1987, (6): 414. doi:10.1039/
c39870000414.; (b) Newhall, W. F. J. Org. Chem. 1964, 29
(1), 185–187. doi:10.1021/jo01024a042.
(12) (a) For examples, see: Steiner, D.; Ivison, L.; Goralski, C. T.;
Appell, R. B.; Gojkovic, J. R.; Singaram, B. Tetrahedron
Asymmetry 2002, 13 (21), 2359–2363. doi:10.1016/S0957-
4166(02)00646-8.; (b) Jones, J.; dos Santos, A. G.; de Lima
Castro, F. Synth. Commun. 1996, 26 (14), 2651–2656. doi:10.
1080/00397919608004581.; (c) Cole-Hamilton, D. J.; Salles,
L.; Nixon, A. F.; Russell, N. C.; Clarke, R.; Pogorzelec, P.
Tetrahedron Asymmetry 1999, 10 (8), 1471–1476. doi:10.
1016/S0957-4166(99)00136-6.; (d) van der Werf, M. J.;
Jongejan, H.; Franssen, M. C. R. Tetrahedron Lett. 2001, 42
(32), 5521–5524. doi:10.1016/S0040-4039(01)01037-1.
(13) (a) Enzyme-mediated hydrolysis has been reported, see: Wei-
jers, C. A. G. M. Tetrahedron Asymmetry 1997, 8 (4), 639–
647. doi:10.1016/S0957-4166(97)00012-8.; (b) van der Werf,
M. J.; Orru, R. V. A.; Overkamp, K. M.; Swarts, H. J.;
Osprian, A.; de Bont, J. A. M.; Faber, K. Appl. Microbiol.
Biotechnol. 1999, 52 (3), 380. doi:10.1007/s002530051535.
(14) Watts, C. C.; Thoniyot, P.; Hirayama, L. C.; Romano, T.;
Singaram, B. Tetrahedron Asymmetry 2005, 16 (10), 1829–
1835. doi:10.1016/j.tetasy.2005.03.036.
(2H, td, JHH= 5.2 Hz, JHH= 2.4 Hz, O–CH2), 3.64 (1H, t,
3JHH= 6.8 Hz, O–CH), 4.74 (2H, s, =CH2) ppm. 13C NMR
(100 MHz, CDCl3) d: 26.0 (CH3), 26.5 (CH3), 30.1 (CH2),
35.5 (CH2), 37.9 (CH2), 42.3 (CH), 47.3 (N–CH2), 59.4 (C),
66.5 (O–CH2), 81.7 (O–CH), 113.7 (C=CH2), 153.5
(C=CH2) ppm. MS (EI, 70 eV) m/z (%): 213 (M+, 14), 156
(87), 143 (22), 114 (100), 83 (38). Anal. calcd. for
C12H23NO2 (213.3): C, 67.57; H, 10.87; N, 6.57. Found: C,
67.73; H, 10.77; N, 6.52.
Appendix II
General procedure for the preparation of compounds
3a and 3b
Et3N (0.10 mol) was added to a cooled (0 8C) solution of
the starting b-amino alcohols 2a and 2b (0.03 mol), TsCl
(0.07 mol), and DMAP (30 mg) in dry CH2Cl2 (200 mL). The
mixture was allowed to reach RT and stirred at this tempera-
ture for 24 h after which a saturated NH4Cl solution (100 mL)
was added. The mixture was extracted with CH2Cl2 (3 Â
50 mL), and the organic fractions were collected, dried over
Na2SO4, filtered, and the solvent removed in vacuo, afford-
ing the desired aziridines (3a and 3b) after flash column
chromatography purification (hexane/AcOEt 8:2).
The data for 3a
White powder, yield: 8.91 g (85%), mp 111–113 8C.
[a]2D5 +24.7 (c1.0, CHCl3). IR n(cm–1, KBr): 1643, 1596,
1
1374, 1330, 1124, 1088. H NMR (400 MHz, CDCl3) d:
1.37 (3H, s, CH3), 1.67 (3H, s, CH3), 1.35–1.70 and 2.21
(6H, m, 3CH2), 1.86 (1H, m, CH), 2.41 (3H, s, CH3), 2.62
3
3
(1H, dd, JHH= 10.4 Hz, JHH= 5.6 Hz, N–CH), 2.83 and
3.90 (2H, m, N–CH2), 3.67 and 4.08 (2H, m, O–CH2), 4.63
3
and 4.68 (2H, 2s, =CH2), 7.30 (2H, d, JHH= 8.0 Hz, 2CH),
7.61 (2H, d, JHH= 8.0 Hz, 2CH) ppm. 13C NMR (100 MHz,
3
CDCl3) d: 16.4 (CH3), 22.9 (CH3), 23.5 (CH3), 29.4 (CH2),
34.0 (CH2), 38.3 (CH2), 46.7 (CH), 52.4 (N–CH2), 62.3 (O–
CH2), 69.3 (N–CH), 78.8 (N–C), 112.3 (C=CH2), 129.5
(CH), 130.3 (CH), 137.2 (C), 146.7 (C), 150.9 (C=CH2)
ppm. MS (EI, 70 eV) m/z (%): 349 (M+, 13), 194 (100),
155 (38), 91 (42), 65 (21). Anal. calcd. for C19H27NO3S
(349.5): C, 65.30; H, 7.79; N, 4.01. Found: C, 65.31; H,
7.73; N, 4.00.
Appendix I
The data for 2a
Pale yellow oil, yield: 9.0 g (85%). [a]2D5 –29.8 (c1.0,
CHCl3). IR n(cm–1, KBr): 3332 (broad), 1441, 1044, 887.
1H NMR (400 MHz, CDCl3) d: 1.27 (3H, s, CH3), 1.46–
1.90 (6H, m, 3CH2), 1.72 (3H, s, CH3), 2.27 (1H, m, CH),
The data for 3b
3
2
White powder, yield: 8.59 g (82%), mp 110–111 8C.
2.73 (2H, td, JHH= 6.4 Hz, JHH= 2.8 Hz, N–CH2), 3.64
[a]2D5 –56.1 (c1.0, CHCl3). IR n(cm–1, KBr): 1645, 1597,
Published by NRC Research Press