K. H. Kim et al. / Tetrahedron Letters 50 (2009) 5322–5325
5325
After the usual aqueous workup and column chromatographic purification
process (hexanes/ether, 10:1) compound 3a was isolated as colorless oil,
375 mg (79%).5a A mixture of 3a (316 mg, 1.0 mmol), MeI (705 mg, 5.0 mmol),
and Cs2CO3 (650 mg, 2.0 mmol) in CH3CN (2 mL) was stirred at room
temperature for 6 h. After the usual aqueous workup and column
chromatographic purification process (hexanes/ether, 10:1) compound 4a
carboxylate (2e), showed decarboxylation–elimination product 5k
in good yield (78%) regioselectively, as shown in Scheme 6.
In summary, we disclosed an efficient method for the synthesis
of various 2,4,5-trisubstituted 1,4-pentadienes by using the Pd-cat-
alyzed decarboxylation–elimination protocol as the key step under
the conditions of low loading of PPh3.
was isolated as colorless oil, 284 mg (86%).
A mixture of compound 4a
(165 mg, 0.5 mmol), Pd(OAc)2 (11 mg, 10 mol %), and PPh3 (13 mg, 10 mol %) in
CH3CN (1 mL) was heated to reflux for 1 h under nitrogen atmosphere. After
filtering through a Celite pad, removal of solvent, and the residue was purified
by column chromatographic purification process (hexanes/CH2Cl2, 1:9) to
afford compound 5a (101 mg, 83%) and 6a (9 mg, 8%). Selected spectroscopic
data of compounds 4a, 5a, 5b, 5g, 5i, 6a, and 7a are as follows.
Acknowledgements
This study was financially supported by Special Research Program
of Chonnam National University, 2009. Spectroscopic data were ob-
tained from the Korea Basic Science Institute, Gwangju branch.
Compound 4a: 86%; colorless oil; IR (film) 2950, 1741, 1714 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) d 1.11 (s, 3H), 2.07 (s, 3H), 3.31 (d, J = 14.4 Hz, 1H), 3.37 (d,
J = 14.4 Hz, 1H), 3.76 (s, 3H), 4.34–4.42 (m, 1H), 4.52–4.59 (m, 1H), 5.20–5.31
(m, 2H), 5.77–5.90 (m, 1H), 7.26–7.41 (m, 5H), 7.82 (s, 1H); 13C NMR (CDCl3,
75 MHz) d 18.14, 25.95, 29.71, 51.95, 59.26, 65.96, 118.89, 128.37, 128.59,
128.78, 128.97, 131.35, 135.36, 142.60, 168.48, 172.23, 204.12; ESIMS m/z 331
(M++1).
References and notes
Compound 5a: 83%; colorless oil; IR (film) 2951, 1714, 1676 cmꢀ1 1H NMR
;
1. For the general review on Baylis–Hillman reaction, see: (a) Basavaiah, D.; Rao,
A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811–891; (b) Singh, V.; Batra, S.
Tetrahedron 2008, 64, 4511–4574; (c) Ciganek, E.. In Organic Reactions;
Paquette, L. A., Ed.; John Wiley & Sons: New York, 1997; Vol. 51, pp 201–350;
(d) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001–8062; (e)
Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653–4670; (f) Kim, J. N.; Lee, K.
Y. Curr. Org. Chem. 2002, 6, 627–645; (g) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull.
Korean Chem. Soc. 2005, 26, 1481–1490; (h) Langer, P. Angew. Chem., Int. Ed. 2000,
39, 3049–3052; (i) Krishna, P. R.; Sachwani, R.; Reddy, P. S. Synlett 2008, 2897–
2912; (j) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev. 2009, 109, 1–48.
2. For the synthesis of 1,4-dienes from Baylis–Hillman adducts, see: (a) Basavaiah,
D.; Sharada, D. S.; Kumaragurubaran, N.; Reddy, R. M. J. Org. Chem. 2002, 67,
7135–7137; (b) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron
Lett. 2001, 42, 85–87; (c) Basavaiah, D.; Kumaragurubaran, N.; Sharada, D. S.;
Reddy, R. M. Tetrahedron 2001, 57, 8167–8172.
3. (a) Lee, M. J.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 477–480; (b)
Lee, M. J.; Kim, S. C.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 140–142; (c)
Gowrisankar, S.; Lee, C. G.; Kim, J. N. Tetrahedron Lett. 2004, 45, 6949–6953.
4. For the synthesis and synthetic usefulness of 1,4-diene compounds, see: (a)
Durand, S.; Parrain, J.-L.; Santelli, M. J. Chem. Soc., Perkin Trans. 1 2000, 253–
273; (b) Nicolaou, K. C.; Ramphal, J. Y.; Petasis, N. A.; Serhan, C. N. Angew.
Chem., Int. Ed. Engl. 1991, 30, 1100–1116; (c) Grigg, R.; Dorrity, M. J.; Heaney, F.;
Malone, J. F.; Rajviroongit, S.; Sridharan, V.; Surendrakumar, S. Tetrahedron
1991, 47, 8297–8322; (d) Grigg, R.; Malone, J. F.; Dorrity, M. J.; Heaney, F.;
Rajviroongit, S.; Sridharan, V.; Surendrakumar, S. Tetrahedron Lett. 1988, 29,
4323–4324; (e) Denmark, S. E.; Guagnano, V.; Dixon, J. A.; Stolle, A. J. Org. Chem.
1997, 62, 4610–4628; (f) Klaps, E.; Schmid, W. J. Org. Chem. 1999, 64, 7537–
7546; (g) Hara, R.; Nishihara, Y.; Landre, P. D.; Takahashi, T. Tetrahedron Lett.
1997, 38, 447–450; (h) Prasad, A. S. B.; Knochel, P. Tetrahedron 1997, 53, 16711–
16720; (i) Matsuhashi, H.; Hatanaka, Y.; Kuroboshi, M.; Hiyama, T. Tetrahedron
Lett. 1995, 36, 1539–1540; (j) Agrios, K. A.; Srebnik, M. J. Org. Chem. 1994, 59,
5468–5472; (k) Matsushita, H.; Negishi, E.-i. J. Am. Chem. Soc. 1981, 103, 2882–
2884; (l) Shimp, H. L.; Hare, A.; McLaughlin, M.; Micalizio, G. C. Tetrahedron
2008, 64, 6831–6837; (m) Lee, S. I.; Hwang, G.-S.; Shin, S. C.; Lee, T. G.; Jo, R. H.;
Ryu, D. H. Org. Lett. 2007, 9, 5087–5089.
(CDCl3, 300 MHz) d 2.42 (s, 3H), 3.53 (t, J = 1.5 Hz, 2H), 3.79 (s, 3H), 5.70 (t,
J = 1.8 Hz, 1H), 6.11 (t, J = 1.8 Hz, 1H), 7.25–7.38 (m, 5H), 7.92 (s, 1H); 13C NMR
(CDCl3, 75 MHz) d 25.92, 28.52, 52.11, 124.79, 128.56, 128.91, 129.03, 129.21,
134.93, 141.79, 146.32, 168.30, 199.01; ESIMS m/z 245 (M++1). Anal. Calcd for
C15H16O3: C, 73.75; H, 6.60. Found: C, 73.89; H, 6.75.
Compound 5b: 68%; colorless oil; IR (film) 2952, 2223, 1714 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) d 3.49 (t, J = 1.5 Hz, 2H), 3.83 (s, 3H), 5,75 (t, J = 1.8 Hz, 1H),
5.97 (t, J = 1.5 Hz, 1H), 7.30–7.45 (m, 5H) 7.98 (s, 1H); 13C NMR (CDCl3, 75 MHz)
d 32.15, 52.34, 118.50, 120.66, 126.36, 128.80, 128.91, 129.36, 131.03, 134.38,
143.61, 167.39; ESIMS m/z 228 (M++1). Anal. Calcd for C14H13NO2: C, 73.99; H,
5.77; N, 6.16. Found: C, 74.11; H, 5.97; N, 6.03.
Compound 5g: 73%; colorless oil; IR (film) 2209, 1678 cmꢀ1 1H NMR (CDCl3,
;
300 MHz) d 2.39 (s, 3H), 3.36 (s, 2H), 6.08 (t, J = 1.2 Hz, 1H), 6.25 (s, 1H), 7.07 (s,
1H), 7.35–7.44 (m, 3H), 7.70–7.75 (m, 2H); 13C NMR (CDCl3, 75 MHz) d 25.68,
36.86, 108.08, 118.39, 128.24, 128.68, 128.77, 130.19, 133.47, 144.06, 145.77,
198.24; ESIMS m/z 212 (M++1). Anal. Calcd for C14H13NO: C, 79.59; H, 6.20; N,
6.63. Found: C, 79.84; H, 6.13; N, 6.47.
Compound 5i: 56%; colorless oil; IR (film) 1713, 1516, 1345 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) d 3.69 (t, J = 1.2 Hz, 2H), 3.82 (s, 3H), 5.24 (t, J = 1.8 Hz, 1H),
5.56 (t, J = 1.5 Hz, 1H), 7.34–7.39 (m, 5H), 7.60 (dt, J = 9.0 and 2.7 Hz, 2H), 7.95
(s, 1H), 8.19 (dt, J = 9.0 and 2.4 Hz, 2H); 13C NMR (CDCl3, 75 MHz) d 32.96,
52.25, 115.93, 123.65, 126.79, 128.67, 128.97, 129.06, 129.15, 135.01, 141.83,
144.13, 147.19, 147.78, 168.24; ESIMS m/z 324 (M++1). Anal. Calcd for
C19H17NO4: C, 70.58; H, 5.30; N, 4.33. Found: C, 70.46; H, 5.54; N, 4.30.
Compound 6a: 8%; colorless oil; IR (film) 2951, 1710 cmꢀ1 1H NMR (CDCl3,
;
300 MHz) d 0.99 (d, J = 6.9 Hz, 3H), 2.10 (s, 3H), 2.63–2.69 (m, 1H), 2.76–2.91
(m, 2H), 3.82 (s, 3H), 7.27–7.42 (m, 5H), 7.78 (s, 1H); 13C NMR (CDCl3, 75 MHz)
d 15.66, 28.10, 29.66, 46.10, 52.05, 128.46, 128.55, 129.03, 130.82, 135.39,
141.14, 168.52, 211.63; ESIMS m/z 247 (M++1).
Compound 7a: 63%; colorless oil; IR (film) 2977, 1712, 1707 cmꢀ1 1H NMR
;
(CDCl3, 300 MHz) d 0.92 (s, 3H), 1.88–1.96 (m, 1H), 2.02 (s, 3H), 2.33–2.40 (m,
1H), 2.93 (s, 2H), 3.76 (s, 3H), 4.90–4.96 (m, 2H), 5.39–5.52 (m, 1H), 7.26–7.41
(m, 5H), 7.76 (s, 1H); 13C NMR (CDCl3, 75 MHz) d 20.09, 25.76, 33.86, 42.75,
51.82, 51.86, 118.14, 128.14, 128.50, 128.79, 130.21, 133.58, 135.74, 141.63,
168.90, 211.75; ESIMS m/z 287 (M++1).
5. For our recent Pd-catalyzed decarboxylative protonation and allylation of
modified Baylis–Hillman adducts, see: (a) Gowrisankar, S.; Kim, K. H.; Kim, S.
H.; Kim, J. N. Tetrahedron Lett. 2008, 49, 6241–6244; (b) Kim, J. M.; Kim, S. H.;
Lee, H. S.; Kim, J. N. Tetrahedron Lett. 2009, 50, 1734–1737; (c) Gowrisankar, S.;
Kim, E. S.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 33–34; (d) Kim, S. H.; Lee,
H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2009, 50, 3038–3041.
8. Shimizu, I.. In Handbook of Organopalladium Chemistry for Organic Synthesis;
Negishi, E.-i., Ed.; Wiley Interscience, 2002; Vol. 2, pp 1981–1994.
9. For the Pd-catalyzed decarboxylative allylation and related reactions involving
nitro arene or pyridine moiety by Tunge and co-workers, see: (a) Waetzig, S. R.;
Tunge, J. A. J. Am. Chem. Soc. 2007, 129, 14860–14861; (b) Waetzig, S. R.; Tunge,
J. A. J. Am. Chem. Soc. 2007, 129, 4138–4139; (c) Tunge, J. A.; Burger, E. C. Eur. J.
Org. Chem. 2005, 1715–1726. and further references cited therein; (d) Weaver,
J. D.; Tunge, J. A. Org. Lett. 2008, 10, 4657–4660.
10. The cinnamyl bromides were prepared by treatment of the Baylis–Hillman
alcohols with aqueous HBr according to the literature procedure, see: (a)
Buchholz, R.; Hoffmann, H. M. R. Helv. Chim. Acta 1991, 74, 1213–1220; (b)
Ameer, F.; Drewes, S. E.; Emslie, N. D.; Kaye, P. T.; Mann, R. L. J. Chem. Soc.,
Perkin Trans. 1 1983, 2293–2295.
6. For the Pd-catalyzed decarboxylation–elimination, see: (a) Shimizu, I.; Tsuji, J. J.
Am. Chem. Soc. 1982, 104, 5844–5846; (b) Kataoka, H.; Yamada, T.; Goto, K.;
Tsuji, J. Tetrahedron 1987, 43, 4107–4112; (c) Tsuji, J.; Nisar, M.; Minami, I.
Chem. Lett. 1987, 23–24; (d) Tsuji, J.; Nisar, M.; Minami, I. Tetrahedron Lett.
1986, 27, 2483–2486; (e) Tsuji, J.; Minami, I. Acc. Chem. Res. 1987, 20, 140–145.
7. Typical procedure for the synthesis of 3a, 4a, and 5a. Compound 1a was
prepared from Baylis–Hillman adduct by treatment with HBr as reported.10
A
stirred mixture of 1a (383 mg, 1.5 mmol), 2a (256 mg, 1.8 mmol), and K2CO3
(415 mg, 3.0 mmol) in CH3CN (2 mL) was stirred at room temperature for 12 h.