5328
B. Godoi et al. / Tetrahedron Letters 50 (2009) 5326–5328
Table 2 (continued)
Acknowledgments
#
Substrate
Organoboron
Product yield (%)a/time
We are grateful to CNPq/INCT-catalise, CAPES (SAUX), and FA-
PERGS, for financial support. CNPq is also acknowledged for the fel-
lowships (to G.Z. and B.G.).
O
10
1a
B(OH)2
SeBu
References and notes
2j
3j (85)/2h
1. (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873; (b) Arcadi, A.; Cacchi, S.; Di
Giuseppe, S.; Fabrizi, G.; Marinelli, F. Org. Lett. 2002, 4, 2409; (c) Masters, K. S.;
Flynn, B. L. J. Org. Chem. 2008, 73, 8081; (d) Halim, R.; Scarnmells, P. J.; Flynn, B.
L. Org. Lett. 2008, 10, 1967; (e) Bui, C. T.; Flynn, B. L. J. Comb. Chem. 2006, 8, 163;
(f) Sebille, S.; Gall, D.; de Tullio, P.; Florence, X.; Lebrun, P.; Pirotte, B. J. Med.
Chem. 2006, 49, 4690; (g) Madrid, P. B.; Liou, A. P.; DeRisi, J. L.; Guy, R. K. J. Med.
Chem. 2006, 49, 4535; (h) Heinrich, T.; Böttcher, H.; Schiemann, K.; Holzemann,
G.; Schwarz, M.; Bartoszyk, G. D.; Amsterdam, C.; Greiner, H. E.; Seyfried, C. A.
Bioorg. Med. Chem. 2004, 12, 4843; (i) Tang, L.; Yu, J.; Leng, Y.; Feng, Y.; Yang, Y.;
Ji, R. Bioorg. Med. Chem. Lett. 2003, 13, 3437.
2. (a) Jin, Z.; Kang, Y. Total synthesis of daurichromenic acid. PCT Int. Appl. WO
2004058738, 2004.; (b) Iwata, N.; Wang, N.; Yao, X.; Kitanaka, S. J. Nat. Prod.
2004, 67, 1106; (c) Hu, H.; Harrison, T. J.; Wilson, P. D. J. Org. Chem. 2004, 69,
3782.
3. Korec, R.; Sensch, K. H.; Zoukas, T. Arzneim. Forsch. 2000, 50, 122.
4. (a) Worlikar, S. A.; Kesharwani, T.; Yao, T.; Larock, R. C. J. Org. Chem. 2007, 72,
1347; (b) Godoi, B.; Speranca, A.; Back, D. F.; Brandao, R.; Nogueira, C. W.; Zeni,
G. J. Org. Chem. 2009, 74, 3469; (c) The best condition for the I2 cyclization
reactions was the addition of NaHCO3 (0.5 mmol), at room temperature, to a
solution of 0.25 mmol of selenophenyl propargyl aryl ethers in 3 mL of THF.
After that, 3 equiv of I2 in 2 mL of THF was gradually added at room
temperature. The reaction mixture was allowed to stir at room temperature
for 1 h.
O
S
11
12
13
1a
BF3K
S
SeBu
3k (48)b/2h
2k
O
O
I
2a
SePh
SePh
3l (82)/1.5h
1b
O
CF3
1b
2d
2j
SePh
3m (55)/6h
O
14
15
1b
O
O
SePh
I2 (3 equiv), NaHCO3 (2 equiv)
THF, r. t.
R
R
3n (30)/6h
I
SeR1
SeR1
O
O
5. (a) Schroter, S.; Stock, C.; Bach, T. Tetrahedron 2005, 61, 2245; (b)Handbook of
Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-
Interscience: New York, 2002; (c)Metal-Catalyzed Cross-coupling Reactions;
Diederich, F., Stang, P. J., Eds.; Wiley-VCH: New York, 1998; (d)Cross-coupling
Reactions: A Practical Guide; Miyaura, N., Ed.Topics in Current Chemistry Series
219; Springer: New York, 2002; (e) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95,
2457.
2a
I
SePh
SePh
1c
3o (70)/2h
6. Frigoli, M.; Moustrou, C.; Samat, A.; Guglielmetti, R. Eur. J. Org. Chem. 2003,
2799.
O
7. General procedure for the cross-coupling reaction: To a solution of appropriate
3-iodo-4-chalcogen-2H-benzopyran (0.25 mmol) in DMF (5 mL) were added the
Pd(PPh3)2Cl2 (0.003 g, 5 mol %) and boronic acid (0.5 mmol) under argon. The
resulting solution was stirred for 30 min at room temperature. After this time, a
solution of K2CO3 (0.5 mmol, 0.254 g) in H2O (1 mL) was added. The mixture was
then heated at 60 °C for the time indicated in Table 2, cooled to room
temperature, diluted with dichloromethane (20 mL), and washed with brine
(2 Â 20 mL). The organic phase was separated, dried over MgSO4, and
concentrated under vacuum. The residue was purified by flash chromato-
graphy. Selected spectral and analytical data for 3-phenyl-6-methyl-4-
butylselenyl-2H-benzopyran (6a): Yield: 0.087 g (99%). 1H NMR: CDCl3,
400 MHz, d (ppm): 7.57 (s, 1H), 7.42–7.29 (m, 5H), 6.98–6.95 (m, 1H), 6.80 (d,
J = 8.0 Hz, 1H), 4.86 (s, 2H), 2.43 (t, J = 7.3 Hz, 2H), 2.33 (s, 3H), 1.39 (quint,
J = 7.6 Hz, 2H), 1.16 (sext, J = 7.6 Hz, 2H), 0.74 (s, 3H). 13C NMR: CDCl3, 50 MHz, d
(ppm): 151.7, 140.7, 139.2, 131.0, 129.4, 128.9, 128.8, 128.0, 124.1, 122.7, 115.7,
70.3, 31.6, 27.2, 22.4, 20.8, 13.4. MS (EI, 70 eV) m/z (relative intensity): 357 (4),
354 (51), 298 (100), 252 (3), 218 (90), 189 (14), 176 (37), 163 (14), 150 (10), 114
(14), 101 (6), 57 (3). Anal. (%) Calcd for C20H22OSe: C 67.22, H 6.21. Found: C
67.45, H 6.47.
16
1c
2d
CF3
SePh
3p (55)/2h
a
Yields are given for isolated products.
Reaction carried out at 100 °C.
b
In this way, substrate 1a underwent palladium cross-coupling
with thienyl trifluoroborates furnishing the corresponding 3-thie-
nyl-4-butylselenyl-2H-benzopyran 3k in moderate yield (Table 2,
entry 11).
In summary, we have explored the Suzuki cross-coupling reac-
tion of arylboronic acids with 3-iodo-4-chalcogen-2H-benzopyran
derivatives using a catalytic amount of PdCl2(PPh3)2. The reaction
proceeded cleanly under mild reaction conditions, short reaction
time, and was performed with aryl boronic acids bearing elec-
tron-withdrawing, electron-donating, and neutral substituents. It
is important to point out that this route permits an easy and effi-
cient access to highly substituted benzopyran. The pharmacologi-
cal activity of these compounds is in progress and will appear in
a specialized journal soon.
8. (a) Arvela, R. K.; Leadbeater, N. E. Org. Lett. 2005, 7, 2101; (b) LeBlond, C. R.;
Andrews, A. T.; Sowa, J. R.; Sun, Y. Org. Lett. 2001, 3, 1555.
9. (a) Molander, G. A.; Canturk, B.; Kennedy, L. E. J. Org. Chem. 2009, 74, 973; (b)
Molander, G. A.; Ellis, N. Acc. Chem. Res. 2007, 40, 275; (c) Molander, G. A.;
Petrillo, D. E.; Landzberg, N. R.; Rohanna, J. C.; Biolatto, B. Synlett 2005, 1763;
(d) Molander, G. A.; Figueroa, R. Aldrichim. Acta 2005, 38, 49; (e) Molander, G.
A.; Felix, L. A. J. Org. Chem. 2005, 70, 3950; (f) Molander, G. A.; Yun, C. S.;
Ribagorda, M.; Biolatto, B. J. Org. Chem. 2003, 68, 5534; (g) Molander, G. A.;
Biolatto, B. J. Org. Chem. 2003, 68, 4302; (h) Molander, G. A.; Katona, B. W.;
Machrouhi, F. J. Org. Chem. 2002, 67, 8416; (i) Molander, G. A.; Reviro, M. R.
Org. Lett. 2002, 4, 107.