P. Paira et al. / Tetrahedron Letters 50 (2009) 5505–5509
5509
4. (a) Dallinger, D.; Kappe, C. O. Chem. Rev. 2007, 107, 2563–2591; (b) Herrero, M.
A.; Kremsner, J. M.; Kappe, C. O. J. Org. Chem. 2008, 73, 36–47; (c) Leadbeater, N.
E.; Marco, M. Org. Lett. 2002, 4, 2973–2976; (d) Leadbeater, N. E.; Marco, M.
Angew. Chem., Int. Ed. 2003, 42, 1407–1409; (e) Leadbeater, N. E.; Marco, M. J.
Org. Chem. 2003, 68, 5660–5667; (f) Dyker, G. Angew. Chem., Int. Ed. 1999, 38,
1698–1712; (g) Denmark, S. E.; Baird, J. D. Chem. Eur. J. 2006, 12, 4954–4963;
(h) Ackermann, L. C.; Gschrei, J.; Althammer, A.; Riederer, M. Chem. Commun.
2006, 1419–1421; (i) Kofink, C. C.; Blank, B.; Pagano, S.; Götz, N.; Knochel, P.
Chem. Commun. 2007, 1954–1956.
5. (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 20, 3437–3440;
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457–2483; (c) Suzuki, A. J.
Organomet. Chem. 1999, 576, 147–168; (d) Suzuki, A. J. Organomet. Chem. 2002,
653, 83–90; (e) Kotha, S.; Lahiri, K.; Kashinath, D. Tetrahedron 2002, 58, 9633–
9695; (f) Miyaura, N. In Metal-Catalyzed Cross-Coupling Reactions, 2nd ed.;
Meijere, A. de, Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 1, pp 41–
124.
6. (a) Bringmann, G.; Gunther, C.; Ochse, M.; Schupp, O.; Tasler, S. In Progress in
the Chemistry of Organic Natural Products; Herz, W.; Falk, H.; Kirby, G. W.;
Moore, R. E.; Tamm, C., Eds.; Springer: Wien, Austria, 2001; Vol. 82, pp 1–249.;
(b) Bringmann, G.; Feineis, D. Acta Chim. Ther. 2000, 26, 151–171; c Bringmann,
G. In Guidelines and Issue for the Discovery and Drug Development against Tropical
Diseases; Vial, H.; Fairlamb, A.; Ridley, R. Eds.; World Health Organisation:
Geneva, 2003; pp 145–152.
100
80
60
40
20
0
1
2
3
4
5
7. Saha, P.; Naskar, S.; Paira, P.; Hazra, A.; Sahu, K. B.; Paira, R.; Banerjee, S.;
No of cycle
8. (a) Zeng, Q.; Kwok, Y.; Kerwin, S. M.; Mangold, G.; Hurley, L. H. J. Med. Chem.
1998, 41, 4273–4278; (b) Kim, M.-Y.; Duan, W.; Gleason-Guzman, M.; Hurley,
L. H. J. Med. Chem. 2003, 46, 571–583.
Figure 2. Reusability of the Amberlite IRA 402(OH) resin tested using 1a and 2b.
9. Paira, P.; Paira, R.; Hazra, A.; Naskar, S.; Sahu, K. B.; Saha, P.; Mondal, S.; Maity,
A.; Banerjee, S.; Mondal, N. B. Tetrahedron Lett. 2009, 50, 4619–4623.
10. (a) Das, B.; Majhi, A.; Banerjee, J.; Chowdhury, N. J. Mol. Catal. A 2006, 260, 32–
34; (b) Joseph, K. J.; Jain, L. S.; Sain, B. J. Mol. Catal. A 2006, 247, 99–102; (c)
Yadav, J. S.; Reddy, B. V. S.; Gupta, M. K.; Prattap, I.; Pandey, S. K. Catal. Commun.
2007, 8, 2208–2211; (d) Garg, N. K.; Woodroofe, C. C.; Lacenere, C. J.; Quake, S.
R.; Stoltz, B. M. Chem. Commun. 2005, 36, 4551–4553; (e) Solabannavar, S. B.;
Desai, U. V.; Mane, R. B. Green Chem. 2002, 4, 347–348.
consecutive five-time use of the resin, there is only a slight
decrease in the conversion (95–85%) of the biaryl products
(Fig. 2).
2. Conclusion
In summary, we have described a simple, convenient, and effi-
cient protocol for the preparation of biaryl quinolonoquinoxalino-
oxazocines from 5,7-dibromoquinolono quinoxalino-oxazocines
using Amberlite IRA 402(OH) ion-exchange resin. The attractiveness
of this protocol lies in the mild reaction conditions, greater selectiv-
ity, simplicity in operation, cleaner reaction profiles, and low cost
coupled with reusability of the resin. These make it an attractive
green process for the synthesis of biaryl heteroaromatics of biologi-
cal importance.
12. General reaction procedure for the synthesis of biaryl quinolones (3a–k):
Appropriate amount of dihaloquinolonoquinoxalino-oxazocine (1a/b)
(0.5 mmol) was taken in 20 mL of water in a 100 mL RB flask under inert
atmosphere, 400 mg of Amberlite IRA 402(OH) was added, and the mixture
was stirred at 45–50 °C till dissolution of the substrate. Then 0.0005 mmol
Pd(PPh3)4 and aryl or hetero aryl boronic acids 2a–j (1.1 mmol, 1:2.2 molar
ratio with respect to the substrate) were added to the stirred solution and the
stirring was continued for 30 min. The flask was placed in an oil bath and the
stirring was continued for 10–12 h at 90–95 °C. After completion of the
reaction, the resin was recovered by simple filtration, thoroughly washed with
ethanol followed by sodium hydroxide solution, and dried at 80 °C under
reduced pressure for subsequent runs. The filtrate was transferred to
a
separating funnel and extracted with ethyl acetate. The organic layer was
washed thoroughly with water until free from alkali, dried over anhydrous
Acknowledgments
sodium sulfate, and evaporated to dryness in
a rotary evaporator under
We like to thank the Council of Scientific and Industrial Re-
search (CSIR), New Delhi, for financial support in the form of fel-
lowships to P. Paira, R. Paira, A. Hazra, K. B. Sahu, S. Naskar, P.
Saha, S. Mondal and A. Maity, Mr. K. K. Sarkar for HRMS analysis
and Mr. Rajendra Mahato for technical help. We are also thankful
to Dr. B. Achari, Emeritus Scientist, CSIR, for critical suggestions
and encouragement.
reduced pressure. The residue was chromatographed over silica gel (60–120,
mesh), eluting with a mixture of ethyl acetate–pet. ether in different ratios to
yield the biaryl quinolones (3a–k).
Compound 3a: Obtained from 20% ethyl acetate–pet. ether fraction and
crystallized from chloroform–hexane mixture to give white crystalline solid in
90% yield. Mp 220 °C; Rf (60% pet. ether–chloroform) 0.55; IR (KBr, cmÀ1
) m
3444, 1660, 1419, 767. 1H NMR (600 MHz, CDCl3): d 4.96 (1H, d, J = 15.6 Hz),
5.49 (1H, d, J = 16.2 Hz), 6.17 (1H, d, J = 13.8 Hz), 6.53 (1H, d, J = 13.8 Hz), 6.66
(1H, d, J = 9.6 Hz), 7.22 (1H, s), 7.35 (2H, m), 7.45(4H, m), 7.51 (2H, t, J = 7.8 Hz),
7.67 (3H, m), 7.73 (2H, m), 7.91(1H, m), 8.20 (1H, m); 13C NMR (CDCl3,
150 MHz): d. 50.4 (CH2), 77.2 (CH2), 120.4 (C), 121.9 (CH), 126.7 (CH), 127.9
(CH), 128.1 (CH), 128.3 (CH), 128.5 (2 Â CH), 128.6 (2 Â CH), 128.9 (C), 129.4
(2 Â CH), 129.8 (CH), 129.9 (2 Â CH), 130.0 (CH), 130.5 (CH), 134.7 (C), 137.0
(C), 137.2 (CH), 138.1 (C), 138.7 (C), 141.1 (C), 141.8 (C), 143.9 (C), 150.1 (C),
151.7 (C), 163.1 (C, CO). ESI-MS: m/z 468 [M+H]+, 490 [M+Na]+ HRMS: calcd
490.1531 [M+Na]+; found 490.1537.
Supplementary data
Supplementary data (Experimental procedures, characteriza-
tion for all compounds and crystallographic data.) associated with
this article can be found, in the online version, at doi:10.1016/
Compound 3h: Obtained from 30% ethyl acetate–pet. ether fraction and
crystallized from chloroform–hexane mixture to give a white crystalline solid
in 95% yield. Mp 202–204 °C; Rf (60% pet. ether–chloroform) 0.52; IR (KBr,
cmÀ1 3055, 3009, 1661, 1587, 754. 1H NMR (600 MHz, CDCl3): d 4.97 (1H, d,
) m
References and notes
J = 16.2 Hz), 5.49 (1H, d, J = 16.2 Hz), 6.23 (1H, d, J = 13.8 Hz), 6.59 (1H, d,
J = 13.8 Hz), 6.68 (1H, d, J = 9.6 Hz), 7.43 (1H, s), 7.49 (1H, d, J = 8.4 Hz), 7.55
(4H, m), 7.72 (3H, m) 7.86 (3H, m), 7.92 (5H, m), 7.99 (1H, d, J = 8.4 Hz), 8.1 (1H,
s), 8.20 (1H, m); 13C NMR (CDCl3, 150 MHz): d 50.2 (CH2), 77.2 (CH2), 120.7 (C),
122.0 (CH), 126.4 (CH), 126.5 (CH), 126.6 (CH), 126.7 (CH), 127.1 (CH), 127.2
(CH), 127.7 (CH), 127.8 (2 Â CH), 128.0 (CH), 128.1 (CH), 128.2 (CH), 128.3
(2 Â CH), 128.6 (CH), 128.9 (CH), 129.8 (CH), 129.9 (CH), 130.5 (CH), 132.7 (C),
132.9 (C), 133.1 (C), 133.4 (C), 134.6 (C), 134.8 (C), 136.1 (C), 137.1 (C), 137.2
(CH), 138.2 (C), 141.1 (C), 141.8 (C), 144.0 (C), 150.1 (C), 151.7 (C), 163.1 (C,
CO). ESI-MS: m/z 568 [M+H]+, 590 [M+Na]+ HRMS: calcd 590.1844 [M+Na]+;
found 590.1844.
1. (a) Anastas, P. T.; Warner, J. C.. Green Chemistry: Theory and Practice; Oxford
University Press: New York, 1988; (b) Matlack, A. S.. Introduction to Green
Chemistry; Marcel Dekker: New York, 2001; (c) Lancester, M.. Green Chemistry:
An Introductory Text; Royal Society of Chemistry: Cambridge, 2002; (d) Clark, J.
H.; Macquarrie, D.. Handbook of Green Chemistry & Technology; Blackwell:
Oxford, 2002.
2. (a) Bai, L.; Wang, J. X.; Zhang, Y. Green Chem. 2003, 5, 615–617; (b) Pironti, V.;
Colonna, S. Green Chem. 2005, 7, 43–45; (c) Nüchter, M.; Ondruschka, B.;
Bonrath, W.; Gum, A. Green Chem. 2004, 6, 128–141.
3. Chowdhury, C.; Mukherjee, S.; Das, B.; Achari, B. J. Org. Chem. 2009, 74, 3612–
3615.
13. (a) Beletskaya, I. P.; Cheprakov, A. V. Chem. Rev. 2000, 100, 3009–3066; (b)
Deshmukh, R. R.; Rajagopal, R.; Srinivasan, K. V. Chem. Commun. 2001, 1544.