Wang et al.
JOCArticle
FIGURE 11. Relative energies (B3LYP/DZVP2þ//B3LYP/LANL2DZ þ ZPE(B3LYP/LANL2DZ), kcal/mol; see Computational Methods
for details) of analogues of structures shown in Figure 1 with alternative ligands on Ni (trimethylphosphine in normal text, dichloro-N,N0-
dimethylimidazolylidene in underlined text, N-methyloxazolylidene in bold text, N-methylthiazolylidene in italic text).9
Conclusion
computed and experimental geometries were observed (see
Supporting Information for details). The vibrational frequen-
cies of all stationary points were analyzed to characterize
structures as minima or transition state structures. Intrinsic
reaction coordinate (IRC) calculations15 were used to further
characterize the nature of some transition state structures by
mapping out the portions of the reaction coordinates near to
them (see Supporting Information for details). Geometries for
the parent system (Figure 3) were also reoptimized using
B3LYP/DZVP2þ,16 and no significant changes were observed
(see Supporting Information for coordinates). Single point
energies were calculated for all structures at the B3LYP/
DZVP2þ level,16 and these B3LYP/DZVP2þ//B3LYP/
LANL2DZ þ ZPE(B3LYP/LANL2DZ) energies are reported
throughout the text. (The corresponding energies from B3LYP/
LANL2DZ þ ZPE(B3LYP/LANL2DZ) calculations can be
found in the Supporting Information). This theoretical ap-
proach has been used previously to characterize the chemistry
of various organometallic complexes involving metals from the
first transition series;17 additional tests on the validity of this
We have proposed a catalytic cycle (Scheme 3) for the Ni(0)-
catalyzed isomerization of vinylcyclopropanes to cyclopen-
tenes based on physical organic experiments and theoretical
calculations. Which step in this process is rate-determining
appears to depend on the exact nature of the substrate used. In
addition, the importance of generating a catalyst species with
only one bound NHC was revealed, pointing to the importance
of bulky groups on the NHC and the utility of COD as an
additive. These results should aid the rational design of
catalysts for additional substrates and asymmetric versions
of this useful metal-promoted sigmatropic shift.
Experimental Section
Computational Methods. GAUSSIAN0313 was used for all
calculations. All geometries were optimized without symmetry
constraints using B3LYP/LANL2DZ.14 As a test, the B3LYP/
LANL2DZ level was used to optimize the geometries of several
Ni-allyl and Ni-NHC complexes for which X-ray structures
have been reported, and no significant deviations between the
(14) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652. (b) Becke, A. D.
J. Chem. Phys. 1993, 98, 1372–1377. (c) Lee, C.; Yang, W.; Parr, R. G. Phys.
Rev. B 1988, 37, 785–789. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C.
F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623–11627. (e) Hay, P. J.; Wadt,
W. R. J. Chem. Phys. 1985, 82, 270–283.
(13) GAUSSIAN03, revision B.04; Frisch, M. J.; Trucks, G. W.; Schlegel,
H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.,
Jr., Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Lyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.;
Petresson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda,
R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.;
Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; R.,
Cammi; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; G. A,
VothSalvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.;
Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-
Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M.
W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.
Gaussian, Inc.: Pittsburgh, PA, 2003.
(15) (a) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523–5527.
(b) Fukui, K. Acc. Chem. Res. 1981, 14, 363–368.
(16) Braden, D. A.; Tyler, D. R. J. Am. Chem. Soc. 1998, 120, 942–947.
(17) (a) Tantillo, D. J.; Hoffmann, R. Helv. Chim. Acta 2001, 84, 1396–
1404. (b) Tantillo, D. J.; Hoffmann, R. J. Am. Chem. Soc. 2001, 123, 9855–
9859. (c) Tantillo, D. J.; Carpenter, B. K.; Hoffmann, R. Organometallics
2001, 20, 4562–4564. (d) Tantillo, D. J.; Hietbrink, B. N.; Merlic, C. A.;
Houk, K. N. J. Am. Chem. Soc. 2000, 122, 7136–7137. (Additional note: J.
Am. Chem. Soc. 2001, 123, 5851). (e) Merlic, C. A.; Walsh, J. C.; Tantillo, D.
J.; Houk, K. N. J. Am. Chem. Soc. 1999, 121, 3596–3606. (f) Merlic, C. A.;
Hietbrink, B. N.; Houk, K. N. J. Org. Chem. 2001, 66, 6738–6744. (g) Merlic,
C. A.; Miller, M. M.; Hietbrink, B. N.; Houk, K. N. J. Am. Chem. Soc. 2001,
123, 4904–4918. (h) Hietbrink, B. N., Ph.D. Thesis, University of California, Los
Angeles, 2000.
7832 J. Org. Chem. Vol. 74, No. 20, 2009