C O M M U N I C A T I O N S
glyoxylate 20 or chiral, nonracemic aldehyde (-)-21 to the reaction
mixture gave trans-dioxasilacyclooctene (-)-22 or (-)-23, respec-
tively, as single diastereoisomers.
In summary, the combination of insertion of silylenes into vinyl
epoxides and subsequent allylations of aldehydes represent a powerful
strategy for generating functionalized trans-dioxasilacyclooctenes.
Diastereoselective additions to these alkenes allow efficient transfer
of planar chirality to chirality at stereogenic carbon atoms.
Scheme 2. Synthesis of Nonracemic trans-Dioxasilacyclooctenes
Acknowledgment. This research was supported by the National
Institute of General Medical Sciences of the National Institutes of
Health (GM-54909). K.A.W. thanks Amgen and Lilly for awards to
support research. We thank Dr. P. Dennison (UCI) for the assistance
with NMR spectroscopy, Dr. J. W. Ziller (UCI) for X-ray crystal-
lography, and Dr. J. Greaves and Ms. S. Sorooshian (UCI) for mass
spectrometry. A Fonds Que´be´cois de la Recherche sur la Nature et
les Technologies Fellowship to M.P. is also gratefully acknowledged.
Supporting Information Available: Experimental procedures,
spectroscopic and analytical data for the product, and X-ray data (CIF)
for 18 and 25. This material is available free of charge via the Internet
The diastereoselectivity of the addition of vinyl silaoxetanes to
aldehydes can be explained by considering chairlike six-membered
closed transition states A and B.17 In these transition states, the
silicon atoms bind to the aldehyde to form hypervalent complexes
with trigonal bipyramidal geometry (Scheme 3).12,18 Transition state
A, leading to trans-cycloalkene products, should be favored on the
basis of the preferential pseudoequatorial position19 of the -CH2-
group of the silaoxetane ring and basal position of the tert-butyl
groups in the trigonal bipyramidal complex. In contrast, formation
of the cis-cycloalkene through transition state B requires one tert-
butyl group to occupy an apical position, causing a severe steric
interaction between the two large tert-butyl groups.
References
(1) (a) Ziegler, K.; Wilms, H. Liebigs Ann. Chem. 1950, 567, 1. (b) Cope,
A. C.; Pike, R. A.; Spencer, C. F. J. Am. Chem. Soc. 1953, 75, 3212.
(2) Cope, A. C.; Pawson, B. A. J. Am. Chem. Soc. 1965, 87, 3649.
(3) (a) Bach, R. D.; Mazur, U.; Hamama, I.; Lauderback, S. K. Tetrahedron
1972, 28, 1955. (b) Erner, O. Angew. Chem., Int. Ed. Engl. 1974, 13, 604.
(c) Trætteberg, M. Acta Chem. Scand. 1975, B29, 29. (d) Ermer, O.; Mason,
S. A. Acta Crystallogr. 1982, B38, 2200.
(4) (a) Shea, K. J.; Kim, J.-S. J. Am. Chem. Soc. 1992, 114, 3044. (b) Shea,
K. J.; Kim, J.-S. J. Am. Chem. Soc. 1992, 114, 4846.
(5) (a) Burgoine, K. T.; Davies, S. G.; Peagram, M. J.; Whitham, G. H. J. Chem.
Soc., Perkin Trans. 1 1974, 2629. (b) Palacios, F.; de Heredia, I. P.;
Rubiales, G. J. Org. Chem. 1995, 60, 2384. (c) Adam, W.; Fro¨hling, B.;
Peters, K.; Weinko¨tz, S. J. Am. Chem. Soc. 1998, 120, 8914.
(6) (a) Corey, E. J.; Shulman, J. I. Tetrahedron Lett. 1968, 9, 3655. (b) Cope,
A. C.; Bach, R. D. Org. Synth. 1969, 49, 39. (c) Vedejs, E.; Fuchs, P. L.
J. Am. Chem. Soc. 1971, 93, 4070. (d) Hines, J. N.; Peagram, M. J.; Thomas,
E. J.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 1973, 2332. (e)
Bridges, A. J.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 1974, 142.
(7) (a) Reese, C. B.; Shaw, A. J. Am. Chem. Soc. 1970, 92, 2566. (b) Braddock,
D. C.; Cansell, G.; Hermitage, S. A.; White, A. J. P. Tetrahedron:
Asymmetry 2004, 15, 3123. (c) Whitham, G. H.; Wright, M. J. Chem. Soc.
C 1971, 891.
Scheme 3. Proposed Transition States
(8) For photoisomerization reactions to generate functionalized trans-cy-
clooctenes, see: (a) Royzen, M.; Yap, G. P. A.; Fox, J. M. J. Am. Chem.
Soc. 2008, 130, 3760. For other cyclic trans-alkenes, see: (b) Tomooka,
K.; Komine, N.; Fujiki, D.; Nakai, T.; Yanagitsuru, S.-i. J. Am. Chem.
Soc. 2005, 127, 12182. (c) Tomooka, K.; Suzuki, M.; Shimada, M.;
Yanagitsuru, S.-i.; Uehara, K. Org. Lett. 2006, 8, 963.
The cyclic trans-alkene products underwent highly diastereose-
lective reactions. Hydroboration of anti-Bredt olefin 18 and
subsequent deprotection of the silyl group gave a cyclohexanol with
four contiguous stereocenters (24, eq 4). Osmium tetroxide-
catalyzed dihydroxylation of trisubstituted alkene (-)-22 reached
completion in less than 30 min, providing diol (-)-25 as one
diastereoisomer (eq 5). The reactivity of this strained cyclic alkene
is higher than those of acyclic trisubstituted alkenes bearing an
allylic alkoxy group, which typically react sluggishly with OsO4.20a-c
In addition, the stereochemical outcome exhibited by alkene (-)-
22 is complementary to that generally observed in substrate-
controlled dihydroxylation of comparable acyclic systems.20c,d
(9) Bourque, L. E.; Cleary, P. A.; Woerpel, K. A. J. Am. Chem. Soc. 2007,
129, 12602.
(10) The appropriate choice of silver salt allowed fine-tuning of the reactivity
of the silylene (see ref 9 and references therein).
(11) Gordon, M. S.; Boatz, J. A.; Walsh, R. J. Phys. Chem. 1989, 93, 1584.
(12) (a) Matsumoto, K.; Oshima, K.; Utimoto, K. J. Org. Chem. 1994, 59, 7152.
(b) Kinnaird, J. W. A.; Ng, P. Y.; Kubota, K.; Wang, X.; Leighton, J. L.
J. Am. Chem. Soc. 2002, 124, 7920. (c) Burns, N. Z.; Hackman, B. M.;
Ng, P. Y.; Powelson, I. A.; Leighton, J. L. Angew. Chem., Int. Ed. 2006,
45, 3811.
(13) (a) Myers, A. G.; Kephart, S. E.; Chen, H. J. Am. Chem. Soc. 1992, 114,
7922. (b) Denmark, S. E.; Griedel, B. D.; Coe, D. M.; Schnute, M. E.
J. Am. Chem. Soc. 1994, 116, 7026.
(14) Tzeng, D.; Weber, W. P. J. Am. Chem. Soc. 1980, 102, 1451.
(15) (a) Marshall, J. A.; Trometer, J. D.; Blough, B. E.; Crute, T. D. J. Org.
Chem. 1988, 53, 4274. (b) Restorp, P.; Somfai, P. Eur. J. Org. Chem. 2005,
3946.
(16) Wijsman, G. W.; Iglesias, G. A.; de Wolf, W. H.; Beekman, M. C.;
Bickelhaupt, F.; Kooijman, H.; Spek, A. L. J. Org. Chem. 2001, 66, 1216.
(17) Attempts to remove the silver salts from the reaction mixtures led to
decomposition of the silaoxetanes. Hence, allylation through an open
transition state, with activation of the aldehyde by silver, cannot be
discounted.
(18) (a) Tamao, K.; Hayashi, T.; Ito, Y.; Shiro, M. Organometallics 1992, 11,
182. (b) Chuit, C.; Corriu, R. J. P.; Reye, C.; Young, J. C. Chem. ReV.
1993, 93, 1371.
(19) Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic
Compounds; Wiley: New York, 1994; pp 700-709.
(20) (a) Xu, D.; Park, C. Y.; Sharpless, K. B. Tetrahedron Lett. 1994, 35, 2495.
(b) Shiina, I.; Takasuna, Y.-j.; Suzuki, R.-s.; Oshiumi, H.; Komiyama, Y.;
Hitomi, S.; Fukui, H. Org. Lett. 2006, 8, 5279. (c) Burke, S. D.; Schoenen,
F. J.; Nair, M. S. Tetrahedron Lett. 1987, 28, 4143. (d) Cha, J. K.; Christ,
W. J.; Kishi, Y. Tetrahedron Lett. 1983, 24, 3943.
JA906204A
9
J. AM. CHEM. SOC. VOL. 131, NO. 40, 2009 14183