A R T I C L E S
Balaban et al.
of proteins11 or dendrimers.12 If practical applications are
envisaged, efficient synthetic methods, including optimized
HPLC separations, and/or stereoselective syntheses have to be
developed for accessing enantiopure compounds in sufficient
quantities. Stereochemical challenges are that BChls c, d, and
e have three chiral centers (asterisks in Chart 1), neglecting the
asymmetric carbon atoms of the lipophilic long-chain alcohol
residue (e.g., in phytol), and that the central magnesium atom
becomes an additional stereogenic element upon axial coordina-
tion.13 In the chlorosomes, both epimers of the 3-(1-hydroxy-
ethyl) group are present in varying amounts, and their exact
role in determining the supramolecular architecture is still poorly
understood. It has been demonstrated that, by exposing bacterial
cultures to different light intensities, the ratio of the 31-epimers
is drastically affected.14
In the present study we have optimized both chiral HPLC
conditions and an enantioselective monoreduction which permits
preparation of enantiopure self-assembling BChl d mimics. In
addition, we have assigned the configuration at the sole
31-stereocenter by independent chemical and spectroscopic
methods, which all lead to the same result. Subsequently, we
have investigated the self-assembly properties of the separated
enantiomers by stationary absorption, fluorescence, and circular
dichroism (CD) spectroscopy and by scanning tunneling electron
microscopy (STEM).
co-workers17 have established novel synthetic methods that
could easily be adapted to obtain self-assembling porphyrins
and chlorins with geminal dimethyl groups which prevent the
sometimes spontaneous aerial oxidation of chlorins to porphy-
rins, thus providing pure and stable compounds with a red-
shifted and increased absorption in the vis-NIR region in
comparison to that of porphyrins.
Results and Discussion
To equip porphyrins with recognition groups capable of
assembling supramolecular architectures, we started with the
preformed porphyrin, which was then functionalized.18 This
strategy allowed for the usual lower-yielding porphyrin-forming
reactions to occur at the beginning of synthetic sequences, which
thus permits improved atom management. Scheme 1 presents
the main synthetic transformations for obtaining the self-
assembling BChl mimics addressed in this work.
Diacetylations of 1-Cu. Porphyrin 1 as a free base (1-H2, M
) H2) can be easily obtained at a gram scale by the condensation
of dipyrromethane with 3,5-di-tert-butylbenzaldehyde with
Lewis (BF3 ·OEt2) or Brønsted (TFA) acid catalysis using the
moderately high dilution method (10-2 M) in dichloromethane,
at room temperature, optimized by Lindsey and co-workers.19
By this method, reproducible yields of 35-40% are attainable.
We usually employ an oven-dried 10-L flask and use technical
dichloromethane previously dried over calcium chloride and
deoxygenated by passing a stream of argon through a sintered
Related work by three other groups deserves mention in this
context: (i) Tamiaki et al.15 and, more recently, (ii) Wu¨rthner
et al.16 have used mainly semisynthetic approaches starting with
algal Chl a to obtain self-assembling chlorins; (iii) Lindsey and
(15) (a) Balaban, T. S.; Tamiaki, H.; Holzwarth, A. R.; Schaffner, K. J.
Phys. Chem. 1997, 101, 3424–3431. (b) Miyatake, T.; Tamiaki, H.;
Holzwarth, A. R.; Schaffner, K. HelV. Chim. Acta 1999, 82, 797–
810. (c) Miyatake, T.; Oba, T.; Tamiaki, H. ChemBioChem 2001, 335–
342. (d) Yagai, S.; Tamiaki, H. J. Chem. Soc., Perkin Trans.1 2001,
3135–3144. (e) Yagai, S.; Miyatake, T.; Tamiaki, H. J. Org. Chem.
2002, 67, 49–58. (f) de Boer, I.; Matysik, J.; Amakawa, M.; Yagai,
S.; Tamiaki, H.; Holzwarth, A. R.; de Groot, H. J. M. J. Am. Chem.
Soc. 2003, 125, 13374–13375. (g) Kunieda, M.; Mizoguchi, T.;
Tamiaki, H. Photochem. Photobiol. 2004, 7, 55–61. (h) Sasaki, S.;
Tamiaki, H. Bull. Chem. Soc. Jpn. 2004, 77, 797–800. (i) Kunieda,
M.; Tamiaki, H. J. Org. Chem. 2005, 70, 820–828. (j) Miyatake, T.;
Tamiaki, H. J. Photochem. Photobiol. C: Photochem. ReV. 2005, 6,
89–107. (k) Sasaki, S.; Tamiaki, H. J. Org. Chem. 2006, 71, 2648–
2654. (l) Mizoguchi, T.; Shoji, A.; Kunieda, M.; Miyashita, H.;
Tsuchiya, T.; Mimuro, M.; Tamiaki, H. Photochem. Photobiol. Sci.
2006, 5, 291–299. (m) Saga, Y.; Kim, T.-Y.; Hisai, T.; Tamiaki, H.
Thin Solid Films 2006, 500, 278–282. (n) Tamiaki, H.; Michitsuji,
T.; Shibata, R. Photochem. Photobiol. Sci. 2008, 7, 1225–1230. (o)
Kunieda, M.; Tamiaki, H. J. Org. Chem. 2008, 73, 7686–7694. (p)
Mizoguchi, T.; Kim, T.-Y.; Sawamura, S.; Tamiaki, H. J. Phys. Chem.
B 2008, 112, 16759–16765.
(11) For polypeptide maquettes or myoglobin-binding tetrapyrrolic chro-
mophores, see: (a) Discher, B. M.; Noy, D.; Strzalka, J.; Moser, C. C.;
Lear, J. D.; Blasie, J. K.; Dutton, P. L. Biochemistry 2005, 44, 12329–
12343. (b) Noy, D.; Discher, B. M.; Rubtsov, I. V.; Hochstrasser,
R. M.; Dutton, P. L. Biochemistry 2005, 44, 12344–12354. (c) Pro¨ll,
S.; Wilhelm, B.; Robert, B.; Scheer, H. Biochim. Biophys. Acta
(Bioenergetics) 2006, 1757, 750–763. (d) Markovic´, D.; Pro¨ll, S.;
Bubenzer, C.; Scheer, H. Biochim. Biophys. Acta (Bioenergetics) 2007,
1767, 897–904.
(12) (a) Gensch, T.; Hofkens, J.; Herrmann, A.; Tsuda, K.; Verheijen, W.;
Vosch, T.; Christ, T.; Basche´, T.; Mu¨llen, K.; De Schryver, F. C.
Angew. Chem., Int. Ed. 1999, 38, 3752–3756. (b) Bhyrappa, P.;
Vaijayanthimala, G.; Suslick, K. S. J. Am. Chem. Soc. 1999, 121, 262–
263. (c) Adronov, A.; Gilat, S. L.; Fre´chet, J. M. J.; Ohta, K.; Neuwahl,
F. V. R.; Fleming, G. R. J. Am. Chem. Soc. 2000, 122, 1175–1185.
(d) Adronov, A.; Gilat, S. L.; Fre´chet, J. M. J.; Ohta, K.; Neuwahl,
F. V. R.; Fleming, G. R. J. Am. Chem. Soc. 2000, 122, 1175–1185.
(e) Weil, T.; Wiesler, U. M.; Herrmann, A.; Baur, R.; Hofkens, J.;
De Schryver, F. C.; Mu¨llen, K. J. Am. Chem. Soc. 2001, 123, 8101–
8108. (f) Weil, T.; Reuther, E.; Mu¨llen, K. Angew. Chem., Int. Ed.
2002, 41, 1900–1904. (g) Lee, L. F.; Adronov, A.; Schaller, R. D.;
Fre´chet, J. M. J.; Saykally, R. J. J. Am. Chem. Soc. 2003, 125, 536–
540. (h) Ballester, P.; Gomila, R. M.; Hunter, C. A.; King, A. S. H.;
Twyman, L. J. Chem. Commun. 2003, 38–39. (i) Schweitzer, G.;
Gronheid, R.; Jordens, S.; Lor, M.; De Belder, G.; Weil, T.; Reuther,
E.; Mu¨llen, K.; De Schryver, F. C. J. Phys. Chem. A 2003, 107, 3199–
3207. (j) Metivier, R.; Kulzer, F.; Weil, T.; Mu¨llen, K.; Basche´, T.
J. Am. Chem. Soc. 2004, 126, 14364–14365. (k) Weil, T.; Reuther,
E.; Beer, C.; Mu¨llen, K. Chem.sEur. J. 2004, 10, 1398–1414. (l)
Herrmann, A.; Mu¨llen, K. Chem. Lett. 2006, 35, 978–986. (m) Flors,
C.; Oesterling, I.; Schnitzler, T.; Fron, E.; Schweitzer, G.; Sliwa, M.;
Herrmann, A.; van der Auweraer, M.; de Schryver, F. C.; Mu¨llen, K.;
Hofkens, J. J. Phys. Chem. C 2007, 111, 4861–4870.
(16) (a) Ro¨ger, C.; Mu¨ller, M.; Lysetska, M.; Miloslavina, Y.; Holzwarth,
A. R.; Wu¨rthner, F. J. Am. Chem. Soc. 2006, 128, 6542–6543. (b)
Ro¨ger, C.; Miloslavina, Y.; Brunner, D.; Holzwarth, A. R.; Wu¨rthner,
F. J. Am. Chem. Soc. 2008, 130, 5929–5939. (c) Huber, V.; Sengupta,
S.; Wu¨rthner, F. Chem.sEur. J. 2008, 14, 7791–7807. (d) Ganapathy,
S.; Sengupta, S.; Wawrzyniak, P. K.; Huber, V.; Buda, F.; Baumeister,
U.; Wu¨rthner, F.; de Groot, H. J. M. Proc. Natl. Acad. Sci. U.S.A.
2009, 106, 11472–11477.
(17) (a) Yao, Z.; Bhaumik, J.; Dhanalekshmi, S.; Ptaszek, M.; Rodriguez,
P. A.; Lindsey, J. S. Tetrahedron 2007, 63, 10657–10670. (b) Ptaszek,
M.; Yao, Z.; Savithri, D.; Boyle, P. D.; Lindsey, J. S. Tetrahedron
2007, 63, 12629–12638. (c) Lindsey, J. S.; Chinnasamy, M.; Fan, D.
U.S. Patent US2008/0029155 A1, February 7, 2008.
(18) (a) Balaban, T. S.; Goddard, R.; Linke-Schaetzel, M.; Lehn, J.-M.
J. Am. Chem. Soc. 2003, 125, 4233–4239. (b) Balaban, T. S.;
Eichho¨fer, A.; Krische, M. J.; Lehn, J.-M. HelV. Chim. Acta 2006,
89, 333–351.
(13) (a) Balaban, T. S. Photosynth. Res. 2005, 86, 251–262. (b) Oba, T.;
Tamiaki, H. Bioorg. Med. Chem. 2005, 13, 5733–5739.
(14) (a) Bobe, F. W.; Pfennig, N.; Swanson, K. L.; Smith, K. M.
Biochemistry 1990, 29, 4340–4348. (b) Borrego, C. M.; Gerola, P. D.;
Miller, M.; Cox, R. P. Photosynth. Res. 1999, 59, 159–166. (c)
Steensgaard, D. B.; Wackerbarth, H.; Hildebrandt, P.; Holzwarth, A. R.
J. Phys. Chem. B 2000, 104, 10379–10386. (d) Ishii, T.; Kimura, M.;
Yamamoto, T.; Kirihata, M.; Uehara, K. Photochem. Photobiol. 2000,
71, 567–573.
(19) (a) Lindsey, J. S.; Schreiman, I. C.; Hsu, H. C.; Kearney, P. C.;
Marguerettaz, A. M. J. Org. Chem. 1987, 52, 827–836. (b) Littler,
B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O’Shea, D. F.;
Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 1391–1396. (c)
Littler, B. J.; Ciringh, Y.; Lindsey, J. S. J. Org. Chem. 1999, 64, 2864–
2872.
9
14482 J. AM. CHEM. SOC. VOL. 131, NO. 40, 2009