5818
K. Hatano et al. / Tetrahedron Letters 50 (2009) 5816–5819
plausible mechanism for the fluorescence quenching of 4 upon
mixing with PNA is agglomerate dispersion of 4 formed in the ab-
sence of the lectin due to carbohydrate–lectin specific recognition,
that is, PNA addition converts a highlyemissive ‘AIE active’ situa-
tion of silole 4 into a non-emissive ‘AIE inactive’ situation. Silole-
core dendrimers peripherally functionalized with carbohydrates
such as 4 are potentially useful for detection of a target lectin by
means of the high affinity and specificity of the glycocluster and
the AIE effect of the silole derivative. Further investigations of sil-
ole-core dendrimers functionalized with bioactive oligosaccha-
rides and their applications to detection of pathogens as a novel
biosensor are currently in progress.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Re-
search (C) (No. 21550152) from the Japan Society for the Promo-
tion of Science. We thank Professor K. Tamao, Dr. T. Matsuo and
Dr. T. Fukawa [The Institute of Physical and Chemical Research (RI-
KEN)] for measurements of absolute quantum yield of the silole
dendrimers.
Supplementary data
Figure 3. Pictures of photoluminescence of the HEPES buffer solution of 4 in the
(A) absence and (B) presence of PNA. Excitation: 360 nm.
Supplementary data (analytical data for new compounds) asso-
ciated with this article can be found, in the online version, at
800
A
0 µL
700
20 µL
References and notes
40 µL
600
60 µL
1. (a) Lis, H.; Sharon, N. Chem. Rev. 1998, 98, 637–674; (b) Mammen, M.; Choi, S.
K.; Whitesides, G. M. Angew. Chem., Int. Ed. 1998, 37, 2755–2794; (c) Jelinek, R.;
Kolusheva, S. Chem. Rev. 2004, 104, 5987–6015.
80 µL
500
2. (a) Lee, Y. C.; Townsend, M. R.; Hardy, M. R.; Lönngren, J.; Arnarp, J.; Haraldsson,
M.; Lönn, H. J. Biol. Chem. 1983, 258, 199–202; (b) Lee, Y. C. FASEB J. 1992, 6,
3193–3200.
400
300
200
100
0
3. See following reviews and references cited therein: (a) Lundquist, J. J.; Toone, E.
J. Chem. Rev. 2002, 102, 555–578; (b) Chabre, Y. M.; Roy, R. Curr. Top. Med. Chem.
2008, 8, 1237–1285; (c) Schengrund, C.-L. Biochem. Pharm. 2003, 65, 699–707.
4. (a) Matsuoka, K.; Terabatake, M.; Esumi, Y.; Terunuma, D.; Kuzuhara, H.
Tetrahedron Lett. 1999, 40, 7839–7842; (b) Matsuoka, K.; Kurosawa, H.; Esumi,
Y.; Terunuma, D.; Kuzuhara, H. Carbohydr. Res. 2000, 329, 765–772; (c)
Matsuoka, K.; Oka, H.; Koyama, T.; Esumi, Y.; Terunuma, D. Tetrahedron Lett.
2001, 42, 3327–3330; (d) Matsuoka, K.; Ohtawa, T.; Hinou, H.; Koyama, T.;
Esumi, Y.; Nishimura, S.-I.; Hatano, K.; Terunuma, D. Tetrahedron Lett. 2003, 44,
3617–3620; (e) Mori, T.; Hatano, K.; Matsuoka, K.; Esumi, Y.; Toone, E. J.;
Terunuma, D. Tetrahedron 2005, 61, 2751–2760; (f) Yamada, A.; Hatano, K.;
Koyama, T.; Matsuoka, K.; Esumi, Y.; Terunuma, D. Carbohydr. Res. 2006, 341,
467–473; (g) Yamada, A.; Hatano, K.; Koyama, T.; Matsuoka, K.; Takahashi, N.;
Hidari, K. I. P. J.; Suzuki, T.; Suzuki, Y.; Terunuma, D. Bioorg. Med. Chem. 2007,
15, 1606–1614; (h) Sakamoto, J.-I.; Koyama, T.; Miyamoto, D.;
Yingsakmongkon, S.; Hidari, K. I. P. J.; Jampangern, W.; Suzuki, T.; Suzuki, Y.;
Esumi, Y.; Hatano, K.; Terunuma, D.; Matsuoka, K. Bioorg. Med. Chem. Lett. 2007,
17, 717–721.
5. (a) Hatano, K.; Yamazaki, T.; Yoshino, K.; Ohyama, N.; Koyama, T.; Matsuoka,
K.; Terunuma, D. Tetrahedron Lett. 2008, 49, 5593–5596; (b) Guo, Z.; Lei, A.;
Zhang, Y.; Xu, Q.; Xue, X.; Zhang, F.; Liang, X. Chem. Commun. 2007, 2491–2493;
(c) Peng, J.; Wang, K.; Tan, W.; He, X.; He, C.; Wu, P.; Liu, F. Talanta 2007, 71,
833–840.
6. Nanoparticles scaffolds: (a) Huang, C.-C.; Chen, C.-T.; Shiang, Y.-C.; Lin, Z.-H.;
Chang, H.-T. Anal. Chem. 2009, 81, 875–882; (b) Otsuk, H.; Akiyama, Y.;
Nagasaki, Y.; Kataoka, K. J. Am. Chem. Soc 2001, 123, 8826–8830; (c) Uzawa, H.;
Ohga, K.; Shinozaki, Y.; Ohsawa, I.; Nagatsuka, T.; Seto, Y.; Nishida, Y. Biosens.
Bioelectron. 2008, 24, 923–927; Polymers scaffolds: (d) Kikkeri, R.; Lepenies, B.;
Adibekian, A.; Laurino, P.; Seeberger, P. H. J. Am. Chem. Soc. 2009, 131, 2110–
2112; (e) Baek, M. G.; Stevens, R.; Charych, D. H. Bioconjugate Chem. 2000, 11,
777–788; (f) Xue, C.; Kuo, F. T.; Liu, H. Macromolecules 2007, 40, 6863–6870.
7. Hatano, K.; Aizawa, H.; Yokota, H.; Yamada, A.; Esumi, Y.; Koshino, H.; Koyama,
T.; Matsuoka, K.; Terunuma, D. Tetrahedron Lett. 2007, 48, 4365–4368.
400
450
500
550
600
Wavelength (nm)
800
700
600
500
400
300
200
100
0
B
0 µL
20 µL
40 µL
60 µL
80 µL
400
450
500
550
600
8. Compound 3: ½a D39
ꢁ
ꢀ8.7 (c 1.0, CHCl3). 1H NMR: (CDCl3, 400 MHz) d 6.73–7.12
Wavelength (nm)
(m, 20H, aromatic), 5.34 (d, 6H, J = 2.8 Hz, H-40), 5.18 (t, 6H, J = 9.6 Hz, H-3),
5.10 (t, 6H, J = 8.0 Hz, H-20), 4.95 (dd, 6H, J3 ,4 = 2.8 Hz, J2 ,3 = 10.4 Hz, H-30),
4.87 (t, 6H, J = 8.4 Hz, H-2), 4.43–4.49 (m, 18H, H-1, H-10, H-6b), 4.04–4.15 (m,
18H, H-6a, H-60ab), 3.87 (t, 6H, J = 6.4 Hz, H-50), 3.76–3.85 (m, 12H, H-4,
OCH2b), 3.56–3.60 (m, 6H, H-5), 3.40–3.46 (m, 6H, OCH2a), 2.42 (br s, 24H,
SCH2), 1.96–2.15 (m, 126H, OAc), 1.51–1.61 (m, 24H, OCH2CH2CH2), 1.37–1.49
(m, 28H, SCH2CH2, SiCH2CH2), 1.05–1.07 (m, 4H, SiCH2CH2CH2SiCH2), 0.47–0.56
0
0 0
0
00
Figure 4. PL spectra of silole-core dendrimers 4. (A): Presence of different amounts
of WGA (from 0 to 80 L). Concentration of 4: 0.6 M in HEPES buffer (5 mM, pH
7.4). Concentration of WGA: 40 M in HEPES buffer (5 mM, pH 7.4). Excitation:
360 nm. (B): Addition of different amounts of blank solution (from 0 to 80
Excitation: 360 nm.
l
l
l
lL).