5324
A. Heim-Riether et al. / Bioorg. Med. Chem. Lett. 19 (2009) 5321–5324
Geoghegan, K. F.; Hambor, J. E. J. Clin. Invest. 1996, 97, 761; (c) Reboul, P.;
BnO
BnO
a
b, c, d
Pelletier, J.-P.; Tardif, G.; Cloutier, J.-M.; Martel-Pelletier, J. J. Clin. Invest. 1996,
97, 2011; (d) Wernicke, D.; Seyfert, C.; Hinzmann, B.; Gromnica-Ihle, E. J.
Rheumatol. 1996, 23, 590; (e) Billinghurst, R. C.; Dahlberg, L.; Ionescu, M.;
Reiner, A.; Bourne, R.; Rorabeck, C.; Mitchell, P.; Hambor, J.; Diekmann, O.;
Tschesche, H.; Chen, J.; Van Wart, H.; Poole, A. R. J. Clin. Invest. 1997, 99, 1534;
(f) Freemont, A. J.; Byers, R. J.; Taiwo, Y. O.; Hoyland, J. A. Ann. Rheum. Dis. 1999,
58, 357.
H
O
N
N
Br
O
21
22
O
O
NH
NH
4. (a) Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med. Chem. 2001, 8, 425; (b)
Clark, I. M.; Parker, A. E. Exp. Opin. Ther. Targets 2003, 7, 19; (c) Renkiewicz, R.;
Qiu, L.; Lesch, C.; Sun, X.; Devalaraja, R.; Cody, T.; Kaldjian, E.; Welgus, H.;
Baragi, V. Arthritis Rheum. 2003, 48, 1742.
HN
e
O
HN
O
HO
R
O
O
N
O
N
24 (R = CH2-benzofuran)
23
5. Historically, MMP-1 and -14 were the postulated key players in causing MSS.
However, the non-selective MMP-13 inhibitor CP-544439, which is inactive
against MMP-1, has caused MSS in clinical trials: Reiter, L. A.; Freeman-Cook, K.
D.; Jones, C. S.; Martinelli, G. J.; Antipas, A. S.; Berliner, M. A.; Datta, K.; Downs,
J.; Eskra, J. D.; Forman, M. D.; Greer, E. M.; Guzman, R.; Hardink, J. R.; Janat, F.;
Keene, N. F.; Laird, E. R.; Liras, J.; Lopresti-Morrow, L. L.; Mitchell, P. G.; Pandit,
J.; Robertson, D.; Sperger, D.; Vaughn-Bowser, M. L.; Waller, D. M.; Yocum, S. A.
Bioorg. Med. Chem. Lett. 2006, 16, 5822. MMP-14 has KO mice data supporting it
being a strong candidate for MSS: see Ref. 3a.
6. (a) Wu, J.; Rush, T. S.; Hotchandani, R.; Du, X.; Geck, M.; Collins, E.; Xu, Z.-B.;
Skotnicki, J.; Levin, J. I.; Lovering, F. E. Biorg. Med. Chem. Lett. 2005, 15, 4105; (b)
Li, J.; Rush, T. S.; Li, W.; DeVincentis, D.; Du, X.; Hu, Y.; Thomason, J. R.; Xiang, J.
S.; Skotnicki, J. S.; Tam, S.; Cunningham, K. M.; Chockalingam, P. S.; Morris, E.
A.; Levin, J. I.; Lovering, F. E. Biorg. Med. Chem. Lett. 2005, 15, 4961.
7. Matter, H.; Schudok, M. Curr. Opin. Drug Discovery Dev. 2004, 7, 513.
8. (a) Skiles, J. W.; Gonnella, N. C.; Jeng, A. Y. Curr. Med. Chem. 2004, 11, 2911; (b)
Rao, B. G. Curr. Pharm. Des. 2005, 11, 295; (c) Engel, C. K.; Pirard, B.; Schimanski,
S.; Kirsch, R.; Habermann, J.; Klingler, O.; Schlotte, V.; Weithmann, K. U.;
Wendt, K. U. Chem. Biol. 2005, 12, 181; (d) Pirard, B. Drug Discovery Today 2007,
12, 640.
Scheme 4. Reagents and conditions: (a) 2-furaldehyde-4-boronic acid, Pd(PPh3)4,
2 M Na2CO3, DME, 120 °C; (b) NaClO2, NaH2PO4, HOSO2NH2, dioxane; (c) (S)-2-
amino-2-C6H11-N-methyl-acetamide, TBTU, DIEA, DMF; (d) 10% Pd/C, 1,4-cyclo-
hexadiene, EtOAc, MeOH; (e) ArCH2OH, DIAD, PPh3, THF.
the corresponding amide analogs. Compound 24, the combination
of the benzofuran with the ether linkage, was significantly more
potent than its amide counterpart 2 while maintaining a similar
selectivity profile. In contrast, the methylpyridine ether analogue
25 demonstrated comparable potency to the corresponding amide
linked compound 10, but surprisingly, lost selectivity against
MMP-2, -3, -10, and -12. However, it turned out that the more
soluble pyrazole ether combinations (26–29) depending on the
substitution pattern can best balance both potency and selectivity.
Dimethylpyrazole 29, the combination of N-and C-methylated
pyrazoles 27 and 28, respectively, became the most potent and
selective MMP-13 inhibitor of the series.
9. High-throughput SPR imaging by Graffinity against the company’s fragment/
10. Key interactions of 1 and 2:
p-Stacking with His222; 3 hydrogen bonds:
Carbonyl oxygen of furanyl amide with the backbone amide of Leu185, methyl
amide carbonyl oxygen with the backbone amide nitrogen of Tyr244 of the
specificity loop, and the methyl amide with the backbone carbonyl of Gly183.
Additional interaction for 2: hydrogen bond between the carbonyl oxygen of
the benzofuran carboxylate and the backbone amide nitrogen of Thr245.
Thr245 is at the beginning of the specificity loop and conserved for some
MMPs. The observed HB interaction may effect the conformation of the
selectivity loop and therefore influence overall selectivity. However, since it is
a backbone HB we considered the lipophilic interaction of the benzofuran
within the S10 pocket to be more important.Coordinates for co-structures
deposited as 3I7G (compound 1) and 3I7I (compound 2) with the RCSB protein
data bank.
In summary, we have reported the optimization of a novel class
of non-Zn-chelating MMP-13 inhibitors with the aid of co-crystal
structural information. The hit structure was extended out from
the active site into the S10 pocket by adding an aryl group through
two different linking functionalities. Depending on the linkage dif-
ferent trends for potency and selectivity for the respective aryl
groups were observed. Compounds with excellent potency and
acceptable selectivity profiles were obtained.
References and notes
11. Biological activity of the compounds against the catalytic domain of human
MMP-1, -2, -3, -7, -8, -9, -10, -12, -13, and -14 (all MMPs purchased from
BioMol except for MMP-13 which was made in house and refolded from E-coli)
were assessed by using the EnzoLyteTM 520 Generic MMP Assay Kit (AnaSpec
1. (a)Matrix Metalloproteinases and TIMPs; Woessner, J. F., Nagase, H., Eds.; Oxford
University Press: New York, 2000; (b) Cawston, T. E.; Wilson, A. J. Best Pract.
Res., Clin. Rheumatol. 2006, 20, 983; (c) Huxley-Jones, J.; Foord, S. M.; Barnes, M.
R. Drug Discovery Today 2008, 13, 685.
2. Knäuper, V.; Will, H.; Lopez-Otin, C.; Smith, B.; Atkinson, S. J.; Stanton, H.;
Hembry, R. M.; Murphy, G. J. Biol. Chem. 1996, 271, 17124.
3. Recent review: (a) Rowan, A. D.; Litherland, G. J.; Hui, W.; Milner, J. M. Exp.
Opin. Ther. Targets 2008, 12, 1. and references therein; (b) Mitchell, P. G.;
Magna, H. A.; Reeves, L. M.; Lopresti-Morrow, L. L.; Yocum, S. A.; Rosner, P. J.;
Inc.). This kit uses
a
5-FAM/QXLTM520 fluorescence resonance 10 energy
transfer (FRET) peptide as an MMP substrate. In the intact FRET peptide, the
fluorescence of 5-FAM is quenched by QXLTM520. Upon cleavage into two
separate fragments by MMPs, the fluorescence of 5-FAM is recovered, and can
be monitored at excitation/emission wavelengths = 490 nm/520 nm. The
assays are performed in a 96-well or 384-well microplate format. Reported
IC50 values reflect an n of 2–5.