traditional nucleophilic substitution reactions on neutral boraben-
zenes. Indeed, the evidence shows that it is a thermodynamically
unstable species compared to the most common adducts. The
rich and unusual chemistry of 1 with other substrates, and the
coordination chemistry of the chloroboratabenzene anion are
currently underway.
Acknowledgements
We are grateful to NSERC (Canada), CFI (Canada), FQRNT
(Que´bec) and CCVC (Que´bec) for financial support. M.-A. L.
and S. S. B. would like to acknowledge CRSNG and FQRNT for
scholarships. L.M. is a member of the Institut Universitaire de
France and would like to acknowledge CalMIp and CINES for
computing time. We acknowledge R. T. Baker and C. Diaz-Urrutia
with their help with MS experiments. We acknowledge Prof. H.
J. J. Reich for helpful comments. F.-G. F. would like to thank the
CCRI for hosting him while writing this manuscript.
Fig. 2 Experimental (red) and simulated (black) 1H NMR spectra
of the -SiMe3 region of 1 and 2-Py at various temperatures with
the associated rate constant. Eyring plot for the exchange of the
1-Cl-2-TMS-boratabenzene moieties in 1 and 2-Py.
Notes and references
1 (a) G. C. Fu, Adv. Organomet. Chem., 2001, 47, 101–119; (b) G. E.
Herberich and H. Ohst, Adv. Organomet. Chem., 1986, 25, 199–236;
(c) A. J. Ashe III, S. Al-Ahmad and X. Fang, J. Organomet. Chem.,
1999, 581, 92–97.
2 (a) G. E. Herberich, B. Ganter and M. Pons, Organometallics, 1998, 17,
1254–1256; (b) G. E. Herberich, U. Englert, B. Ganter and M. Pons,
Eur. J. Inorg. Chem., 2000, 979–986; (c) J. Tweddell, D. A. Hoic and G.
C. Fu, J. Org. Chem., 1997, 62, 8286–8287.
transition state associated with a concerted pathway could be
optimized. However, the energy associated with the cleavage of the
platinum chlorobotabenzene moiety (62.6 kcal mol-1) is overcome
by the large electrostatic interaction (ion pairing in the range of
48.5 to 62.5 kcal mol-1) in 2-L. Although the chloroboratabenzene
moiety is formally a nucleophilic substrate because of the anionic
charge, the boron atom in borabenzene is known to remain
electrophilic.17 If an excess of L ligand is available, it can undergo
an associative substitution via the same intermediate speculated
by Fu for the formation of R-boratabenzene adducts from 1-
PMe3-borabenzene in the presence of organic nucleophiles.18
The DE‡ for the transition state observed in Scheme 2 was
calculated to be 27 kcal mol-1 for L = Py. The chloride liberated
by this substitution could then coordinate to the platinum
centre, forming the strong Pt–Cl bond of 3, calculated to be of
94.7 kcal mol-1.
3 von H. Bo¨nnemann, W. Brijoux, R. Brinkmann and W. Meurers, Helv.
Chim. Acta, 1984, 67, 1616–1624.
4 (a) G. C. Bazan, G. Rodriguez, A. J. Ashe III, S. Al-Ahmad and J.
W. Kampf, Organometallics, 1997, 16, 2492–2494; (b) A. J. Ashe III,
S. Al-Ahmad, X. Fang and J. W. Kampf, Organometallics, 1998, 17,
3883–3888; (c) J. S. Rogers, X. Bu and G. C. Bazan, Organometallics,
2000, 19, 3948–3956; (d) Z. J. A. Komon, J. S. Rogers and G. C. Bazan,
2002, 21, 3189-3195; (e) P. Cui, Y. Chen, X. Zeng, J. Sun, G. Li and W.
Xia, Organometallics, 2007, 26, 6519–6521; (f) J. S. Rogers, X. Bu and
G. C. Bazan, J. Am. Chem. Soc., 2000, 122, 730–731; (g) J. S. Rogers, G.
C. Bazan and C. K. Sperry, J. Am. Chem. Soc., 1997, 119, 9305–9306.
5 D. H. Woodmansee, X. Bu and G. C. Bazan, Chem. Commun., 2001,
619–620.
6 (a) B. Y. Lee, S. Wang, M. Putzer, G. P. Bartholomew, X. Bu and G.
C. Bazan, J. Am. Chem. Soc., 2000, 122, 3969–3970; (b) U. Behrens,
T. Meyer-Friedrichsen and J. Heck, Z. Anorg. Allg. Chem., 2003, 629,
1421–1430; (c) C. A. Jaska, D. J. H. Emslie, M. J. D. Bosdet, W. E. Piers,
T. S. Sorensen and M. Parvez, J. Am. Chem. Soc., 2006, 128, 10885–
10896; (d) T. K. Wood, W. E. Piers, B. A. Keay and M. Parvez, Angew.
Chem., Int. Ed., 2009, 48, 4009–4012; (e) T. K. Wood, W. E. Piers, B.
A. Keay and M. Parvez, Chem.–Eur. J., 2010, 16, 12199–12206; (f) U.
Hagenau, J. Heck, E. Hendrickx, A. Persoons, T. Schuld and H. Wong,
Inorg. Chem., 1996, 35, 7863–7866; (g) D. J. H. Emslie, W. E. Piers and
M. Parvez, 2003, 42, 1252–1255.
7 Some leading articles: (a) G. Be´langer-Chabot, P. Rioux, L. Maron and
F.-G. Fontaine, Chem. Commun., 2010, 46, 6816–6818; (b) Y. Yuan, Y.
Chen, G. Li and W. Xia, Organometallics, 2010, 29, 3722–3728; (c) D.
A. Loginov, Z. A. Starivoka, E. A. Petrovskaya and A. R. Kudinov, J.
Organomet. Chem., 2009, 694, 157–160; (d) N. Auvray, T. S. B. Baul,
P. Braunstein, P. Croizat, U. Englert, G. E. Herberich and R. Welter,
Dalton Trans., 2006, 2950–2958; (e) X. Zheng and G. E. Herberich,
Eur. J. Inorg. Chem., 2003, 2175–2182; (f) Y. Yuan, X. Wang, Y. Li,
L. Fan, X. Xu, Y. Chen, G. Li and W. Xia, Organometallics, 2011,
30, 4330–4341; (g) I. A. Cade and A. F. Hill, Dalton Trans., 2011,
DOI: 10.1039/c1dt10849b.
Scheme 2 Associative mechanism for the dissociation of Cl- from 2-L to
generate 4-L.
Conclusions
In this report, the generation of the ionic pair 2-L from an
unusual platinum chloroboratabenzene species in the presence
of L = pyridine, PMe3, MeCN and CNtBu is reported. With
PMe3 and pyridine, an associative substitution at boron can
occur since these Lewis bases are known to strongly stabilize
borabenzene adducts. It exposes the difficulties associated with
the generation of this interesting boratabenzene moiety using
8 A N2 adduct has been observed using IR at 10 K in a nitrogen matrix: G.
Maier, H. P. Reisenauer, J. Henkelmann and C. Kliche, Angew. Chem.,
Int. Ed. Engl., 1988, 27, 295–296.
9 The coordination of the bora(ta)benzene moiety on a transition metal
makes the boron more Lewis acidic and more prone to stabilize weaker
This journal is
The Royal Society of Chemistry 2011
Dalton Trans., 2011, 40, 12439–12442 | 12441
©