234
Y. Chen et al.
LETTER
Rodriguez, M. Tetrahedron Lett. 1997, 37, 8397.
(e) Sakamoto, T.; Kondo, Y.; Yamanaka, H. Synthesis 1984,
252. (f) Habib, N.; Kappe, T. J. Heterocycl. Chem. 1984, 21,
385. (g) Matsuo, K.; Ishida, S.; Takuno, Y. Chem. Pharm.
Bull. 1994, 42, 1149.
yields by this method. While for the acyclic b-enamin-
ones, one acetoxy group of ArI(OAc)2 was transferred to
the product to give selectively the acyclic a-acetoxylated
b-enaminones in good yields.
(5) (a) Negishi, E. J. Organomet. Chem. 1999, 576, 179.
(b) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
(c) Yoshioka, N.; Lahti, P. M.; Kaneko, T.; Kuzumaki, Y.;
Tsuchida, E.; Nishide, H. J. Org. Chem. 1994, 59, 4272.
(d) Farina, V. Pure Appl. Chem. 1996, 68, 73.
(6) (a) Papoutsis, I.; Spyroudis, S.; Varvoglis, A. Tetrahedron
Lett. 1996, 37, 913–916. (b) Papoutsis, I.; Spyroudis, S.;
Varvoglis, A.; Raptopoulou, C. Tetrahedron 1997, 53,
6097–6112.
(7) Rao, V. V. R.; Wentrup, C. J. Chem. Soc., Perkin Trans. 1
2002, 1232.
(8) (a) CaH2-dried EtOAc, THF, MeCN, and CH2Cl2 were also
tested as solvents, but were not superior to DCE. (b) The
conversion was very slow at 40 °C.
Supporting Information for this article is available online at
Acknowledgment
We acknowledge the National Natural Science Foundation of China
(#20802048) and Cultivation Foundation (B) for New Faculty of
Tianjin University (TJU-YFF-08B68) for financial support. We
also thank Miss Xiling Zhao, University of California, San Diego,
for revising our English text.
(9) (a) Kazmierczak, P.; Skulski, L. Synthesis 1998, 1721.
(b) Kazmierczak, P.; Skulski, L.; Kraszkiewicz, L.
Molecules 2001, 6, 881.
References and Notes
(1) (a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108,
5299. (b) Stang, P. J. J. Org. Chem. 2003, 68, 2997.
(c) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102,
2523. (d) Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96,
1123. (e) Richardson, R. D.; Wirth, T. Angew. Chem. Int.
Ed. 2006, 45, 4402. (f) Wirth, T. Angew. Chem. Int. Ed.
2005, 44, 3656. (g) Moriarty, R. M.; Prakash, O.
(10) For a previous example relative to this: Zhang, P. F.; Chen,
Z. C. J. Chem. Res., Synop. 2001, 150.
(11) For the evidence of assigning Z-configuration for such
acyclic b-enaminone compounds, see: Ramtohul, Y. K.;
Chartrand, A. Org. Lett. 2007, 9, 1029.
(12) For a similar nucleophilic substitution process in which
water was acted as nucleophile, see: Moriarty, R. M.;
Berglund, B. A.; Penmasta, R. Tetrahedron Lett. 1992, 33,
6065.
(13) For a similar migration process relative to iodine–oxygen
1,4-dipoles, see: Takaku, M.; Hayashi, Y.; Nozaki, H.
Tetrahedron 1970, 26, 1243.
Hypervalent Iodine in Organic Chemistry: Chemical
Transformations; Wiley-Interscience: New York, 2008.
(h) Moriarty, R. J. Org. Chem. 2005, 70, 2893.
(i) Varvoglis, A. Hypevalent Iodine in Organic Synthesis;
Academic Press: London, 1997. (j) Varvoglis, A. The
Organic Chemistry of Polycoordinated Iodine; VCH
Publishers: New York, 1992. (k) Varvoglis, A. Tetrahedron
1997, 53, 1179.
(14) General Procedure for a-Iodination and N-Arylation of
b-Enaminones
(2) (a) Du, Y.; Liu, R.; Linn, G.; Zhao, K. Org. Lett. 2006, 8,
5919. (b) Li, X.; Du, Y.; Liang, Z.; Li, X.; Pan, Y.; Zhao, K.
Org. Lett. 2009, 11, 2643. (c) Yu, W.; Du, Y.; Zhao, K. Org.
Lett. 2009, 11, 2417. (d) Tellitu, I.; Serna, S.; Herrero, M.
T.; Domínguez, E.; Sanmartin, R. J. Org. Chem. 2007, 72,
1526. (e) Huang, J.; Liang, Y.; Pan, W.; Yang, Y.; Dong, D.
Org. Lett. 2007, 48, 5345. (f) Fan, R.; Wen, F.; Qin, L.; Pu,
D.; Wang, B. Tetrahedron Lett. 2007, 48, 7444. (g) Correa,
A.; Tellitu, I.; Domínguez, E.; Sanmartin, R. J. Org. Chem.
2006, 71, 3501. (h) Aggarwal, R.; Sumran, G.; Saini, A.;
Singh, S. Tetrahedron Lett. 2006, 62, 11100. (i) Ciufolini,
M.; Braun, N.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D.
Synthesis 2007, 3759. (j) Shigehisa, H.; Takayama, J.;
Honda, T. Tetrahedron Lett. 2006, 47, 7301. (k) Braun, N.;
Ousmer, M.; Bray, J.; Bouchu, D.; Peters, K.; Peters, E.;
Ciufolini, M. J. Org. Chem. 2000, 65, 4397.
To a solution of substrate 1 (1.0 mmol) in dried DCE (10
mL) was added dropwise a solution of aryliodine diacetate 2
(1.3 mmol) in dried DCE (10 mL) at 60 °C under nitrogen
atmosphere. After the addition, the reaction mixture was
stirred at this temperature until the conversion was complete
as indicated by TLC. Then the mixture was cooled to r.t.,
treated with sat. aq NaHCO3 (40 mL) and extracted with
CH2Cl2 (3 × 20 mL). The combined organic layer was dried
over Na2SO4 and evaporated under reduced pressure to
remove the solvent. The residue was purified by column
chromatography using a mixture of PE and EtOAc as eluent
to afford the product.
Compound 3a: yellow solid, mp 106–108 °C. 1H NMR (500
MHz, CDCl3): d = 7.32 (t, J = 7.9 Hz, 4 H), 7.14 (t, J = 7.4
Hz, 2 H), 7.02 (d, J = 7.7 Hz, 4 H), 2.75–2.65 (m, 2 H), 2.58
(t, J = 6.0 Hz, 2 H), 2.04–1.91 (m, 2 H). 13C NMR (100
MHz, CDCl3): d = 193.09, 166.95, 145.20, 129.52, 125.45,
125.22, 95.80, 37.54, 34.04, 21.38. ESI-LRMS: m/z = 390.2
[M + H+].
(3) Compound 3a
Crystallized in the monoclinic space group P2 (1)/c with cell
dimensions: a = 10.497 (2) Å, b = 13.607 (3) Å, c = 11.987
(2) Å, a = 90°, b = 114.36 (3)°, g = 90°, V = 1559.9 (5) Å3,
Dc = 1.657 g/cm3, Z = 4. CCDC: 753753.
Compound 5a: yellow solid, mp 102–104 °C. 1H NMR (400
MHz, DMSO): d = 7.51 (dd, J = 4.8, 2.5 Hz, 3 H), 7.35 (dd,
J = 7.7, 1.9 Hz, 2 H), 2.43 (s, 3 H), 2.35 (s, 3 H), 2.22 (s, 3
H). ESI-LRMS: m/z = 271.9 [M + K+]. The spectroscopic
data for all the new compounds could be found in the
Supporting Information.
(4) (a) Krafft, M.; Cran, J. Synlett 2005, 1263. (b) Campos, P.;
Tan, C.; Rodriguez, M. Tetrahedron Lett. 1995, 36, 5257.
(c) Kozmin, S.; Iwama, T.; Huang, Y.; Rawal, V. J. Am.
Chem. Soc. 2002, 124, 4628. (d) Campos, P.; Arranz, J.;
Synlett 2010, No. 2, 231–234 © Thieme Stuttgart · New York