Organometallics 2009, 28, 5837–5840 5837
DOI: 10.1021/om900552e
fac-Tricarbonyl Rhenium(I) Azadipyrromethene Complexes
David V. Partyka,† Nihal Deligonul,‡ Marlena P. Washington,‡ and Thomas G. Gray*,‡
‡Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, and †Creative
Chemistry L.L.C., Cleveland, Ohio 44106
Received June 25, 2009
Summary: Rhenium(I) complexes of azadipyrromethene ligands
are reported; three have been characterized crystallographi-
cally. The free ligands and their metallo-complexes undergo
reductive electrochemistry. Red-light absorption results from
optically allowed transitions to a ligand-localized LUMO.
as luminescence probes; when bound to fac-[99mTc(CO)3]þ,
as potential radioimaging agents. Technetium and rhenium
are strongly homologous, and the design strategy extends to
target-selective probes. The substitutional inertness of
rhenium(I) assists biological applications. A variety of donor
atoms stably bind Re(I) and enable tagging with bioactive
moieties. Among such ligands are isonitriles,16 imidazoles,17
and thioethers.18
The diimine carbonyls of rhenium(I) support varied
applications.19-23 However, limited visible absorption re-
stricts their photochemical uses. Absorption typically sets in
below 450 nm. In a series of 20 rhenium(I) tricarbonyl
diimine complexes, MLCT absorption maxima range from
330 nm (ε=4000 M-1 cm-1) to 402 nm (ε=810 M-1 cm-1).24
Combining the triplet photoproperties of rhenium carbonyl
diimines with intense uptake of long-wavelength visible light
(g600 nm) creates appealing prospects.
Mononuclear rhenium(I) carbonyl complexes draw con-
tinuing scrutiny for their ground- and excited-state proper-
ties. Tricarbonyl rhenium(I) bipyridine and phenanthro-
line complexes, all with facial stereochemistry, emit from
triplet excited states. Excitation into metal-to-ligand charge-
transfer absorptions yields submicrosecond luminescence at
room temperature, with longer lifetimes upon cooling.1-11
Emission from these complexes obeys the approximate
energy-gap law;12,13 luminescence lifetimes, maxima, and
quantum yields respond to changes in the metal-ion coordi-
nation sphere or along the diimine perimeter.
Facial rhenium(I) carbonyls are valuable apart from their
photochemical properties. 186Re and 188Re are beta emitters
under clinical consideration, and rhenium complexes are
often sought as cold analogues of γ-emitting 99mTc species.14
Azadipyrromethenes are a broad ligand set25-30 with
remarkable red-light-absorbing capabilities. Recent work
on boron adducts has produced efficient fluorophores and
drug candidates for human photodynamic therapy.31 The
optically allowed electronic transitions of azadipyrro-
methene complexes are ligand centered,28,29 and the li-
gands’ absorption profile is preserved in metallo-complexes.
þ
The fac-M(CO)3 (M=Tc, Re) core recurs in many com-
plexes having real or potential utility in medical imaging.
Zubieta and co-workers have disclosed chelating ligands
bearing quinoline, tryptophan, and benzimidazole donors.15
When bound to the fac-[Re(CO)3]þ core, the complexes act
(16) Garcia, R.; Domingos, A.; Paulo, A.; Santos, I.; Alberto, R.
Inorg. Chem. 2002, 41, 2422–2428.
(17) Connick, W. B.; Di Bilio, A. J.; Hill, M. G.; Winkler, J. R.; Gray,
*To whom correspondence may be addressed.
(1) Wrighton, M.; Morse, D. L. J. Am. Chem. Soc. 1974, 96, 998–
1003.
(2) Giordano, P. J.; Wrighton, M. S. J. Am. Chem. Soc. 1979, 101,
2888–2897.
(3) Giordano, P. J.; Fredericks, S. M.; Wrighton, M. S.; Morse, D. L.
J. Am. Chem. Soc. 1978, 100, 2257–2259.
(4) Smothers, W. K.; Wrighton, M. S. J. Am. Chem. Soc. 1983, 105,
1067–1069.
(5) Caspar, J. V.; Sullivan, B. P.; Meyer, T. J. Inorg. Chem. 1984, 23,
2104–2109.
(6) Tapolsky, G.; Duesing, R.; Meyer, T. J. J. Phys. Chem. 1989, 93,
3885–3887.
H. B. Inorg. Chim. Acta 1995, 240, 169–173.
(18) Hoepping, A.; Reisgys, M.; Brust, P.; Seifert, S.; Spies, H.;
Alberto, R.; Johannsen, B. J. Med. Chem. 1998, 41, 4429–4432.
(19) Di Bilio, A. J.; Crane, B. R.; Wehbi, W. A.; Kiser, C. N.;
Abu-Omar, M. M.; Carlos, R. M.; Richards, J. H.; Winkler, J. R.;
Gray, H. B. J. Am. Chem. Soc. 2001, 123, 3181–3182.
(20) Miller, J. E.; Gradinaru, C.; Crane, B. R.; Di Bilio, A. J.; Wehbi,
W. A.; Un, S.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc. 2003, 125,
14220–14221.
(21) Reece, S. Y.; Nocera, D. G. J. Am. Chem. Soc. 2005, 127, 9448–
9458.
(22) Stoeffler, H. D.; Thornton, N. B.; Temkin, S. L.; Schanze, K. S.
(7) Tapolsky, G.; Duesing, R.; Meyer, T. J. Inorg. Chem. 1990, 29,
2285–2297.
(8) Dattelbaum, D. M.; Martin, R. L.; Schoonover, J. R.; Meyer, T. J.
J. Am. Chem. Soc. 1995, 117, 7119–7128.
(23) Yam, V. W.-W.; Lo, K. K.-W.; Cheung, K.-K.; Kong, R. Y.-C.
J. Chem. Soc., Chem. Commun. 1995, 1191–1193.
J. Phys. Chem. A 2004, 108, 3518–3526.
(24) Sacksteder, L.; Zipp, A. P.; Brown, E. A.; Streich, J.; Demas,
J. N.; Degraff, B. A. Inorg. Chem. 1990, 29, 4335–4340.
(25) Rogers, M. A. T. J. Chem. Soc. 1943, 596–597.
(26) Killoran, J.; Allen, L.; Gallagher, J. F.; Gallagher, W. M.;
O’Shea, D. Chem. Commun. 2002, 1862–1863.
(27) Zhao, W.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44, 1677–
1679.
(28) Teets, T. S.; Partyka, D. V.; Esswein, A. J.; Updegraff, J. B. III;
Zeller, M.; Hunter, A. D.; Gray, T. G. Inorg. Chem. 2007, 46, 6218–6220.
(29) Teets, T. S.; Partyka, D. V.; Updegraff, J. B. III; Gray, T. G.
Inorg. Chem. 2008, 47, 2338–2346.
(9) Dattelbaum, D. M.; Omberg, K. M.; Hay, P. J.; Gebhart, N. L.;
Martin, R. L.; Schoonover, J. R.; Meyer, T. J. J. Phys. Chem. A 2004,
108, 3527–3536.
(10) Wallace, L.; Rillema, D. P. Inorg. Chem. 1993, 32, 3836–3843.
(11) Lees, A. J. Chem. Rev. 1987, 87, 711–743.
(12) Kober, E. M.; Sullivan, B. P.; Dressick, W. J.; Caspar, J. V.;
Meyer, T. J. J. Am. Chem. Soc. 1980, 102, 7383–7385.
(13) Kober, E. M.; Marshall, J. L.; Dressick, W. J.; Sullivan, B. P.;
Caspar, J. V.; Meyer, T. J. Inorg. Chem. 1985, 24, 2755–2763.
~
(14) Romao, C. C.; Royo, B. In Comprehensive Organometallic
€
Chemistry III; Crabtree, R.; Mingos, M., Eds.; Elsevier Science: Boston,
2006; Vol. 5, Section 5.13.
(15) Wei, L.; Babich, J. W.; Ouellette, W.; Zubieta, J. Inorg. Chem.
(30) Palma, A.; Gallagher, J. F.; Muller-Bunz, H.; Wolowska, J.;
McInnes, E. J. L.; O’Shea, D. F. Dalton Trans. 2009, 273–279.
(31) Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher,
W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2004, 126, 10619–10631.
2006, 45, 3057–3066.
r
2009 American Chemical Society
Published on Web 09/29/2009
pubs.acs.org/Organometallics